
How to Iden3

Distributed Lab
2023

What is Iden3?..2
Identity and claims...2
Polygon ID.. 4

DID and Verifiable Credentials... 4
Verifiable Credential proof types..5

Zero-Knowledge Proof (ZKP)...5
Iden3 ZKP Circuits.. 6

What can you achieve using Iden3 and PolygonID?.. 7
Base architecture.. 8

Core services...8
Issuer...9

Resources... 9
Requirements...9
Polygon ID issuer node..10
Custom issuer.. 11

Wallet (Holder)... 12
Requirements...12
Polygon IDWallet..12
CustomWallet... 13

Verifier... 15
Iden3 contracts system.. 15

State...15
ValidatorContracts... 16
ZKPQueries hash...16
ZKPVerifier... 17
Conclusions on the basic implementation.. 17

How to dive into digital identity?...18
Multichain with Rarimo..20

Prerequisites.. 20
Solution... 20
How to achieve cross-chain?...21

Issuer service particularities... 21
Wallet changes..21
Smart contracts particularities...22

Main motivation...22

2

State and LightweightState contracts.. 22
QueryValidator... 22
ZKPQueriesStorage..23
Verifier contracts...23
Conclusions.. 23

Appendix A. Sparse Merkle Tree operations and its usage...24
Appendix B. Explanation of schemas in the Iden3 protocol...28

3

What is Iden3?

Identity and claims

Iden3 is the protocol that allows the implementation of self-sovereign identity that can be used in
different systems. Each identity can be almost anything and is characterized by:

- claims issued by other identities about it

- claims issued by this identity about others

An identity can belong to a person, a company, an organization, a DAO, or a government. Identity can
even belong to a thing: a chair, a room, a bot, and so on. When discussing identities, we refer to
"identities as accounts".

Iden3 protocol categorizes identities into two types:
● Issuer
● Holder

However, an identity can simultaneously be an issuer and a holder. Let's consider a simple and
transparent example.

Let's say we have two identities: a university and a university student. Upon completing their studies,
the student will receive a diploma. In this case, we can consider the diploma as a claim, where the
university is the issuer, and the student is the holder.

During employment, the student can present their claim, certifying their education at a specific
university. The employer verifies the stamp on the diploma and is confident that the corresponding

4

trusted issuer produced it. In this case, the employer acts as a verifier, verifying the data provided by the
new employee.

But why does the employer trust a particular university? Because the university has the necessary
license, which is also a claim issued by a government authority serving as another issuer. Therefore, the
university acts as both an issuer and a holder simultaneously.

Examples of Claims:
● A certificate (e.g., birth certificate)
● A debt recognition
● An invoice
● An Instagram "Like"
● An endorsement (reputation)
● An email address
● A driving license
● A role in a company
● ... Almost anything!

Every identity has a state. The identity states are published on the blockchain under the identity’s
identifier, anchoring the state of the identity with the timestamp when it is published. In this way, the

5

identity claims can be proved against the anchored identity state at a certain timestamp. Identities
follow the transition functions to transition from one state to the other. The identity state consists of:

● ClaimsMerklee Tree
Contains claims that are issued by this identity

● Revocations Merkle Tree
Contains revocation nonces of the revoked claims

● Roots Merkle Tree
Contains ClaimsMerkle tree’s roots

Polygon ID

You can think of the Polygon ID as one of the Iden3 protocol implementations. The protocol defines,
on a low level, how the parties listed above communicate and interact with each other. Polygon ID is an
abstraction layer to enable developers to build applications leveraging the Iden3 protocol.

DID and Verifiable Credentials

Every identity is recognized by a unique identifier called DID (Decentralized Identifier). Every
identity-based information is represented via Verifiable Credentials (VCs). In the simplest terms, a VC
represents any information related to an individual/enterprise/object. The VC could be as simple as the
entity's age or its highest degree, e.g., it could be a membership certificate issued by a DAO, for
instance.

https://www.w3.org/TR/did-core/
https://www.w3.org/TR/vc-data-model/

6

You can think that claims and verifiable credentials are the same things.

The toolset made available by Polygon ID and Iden3 fully complies with the W3C standards.
PolygonID has a definition spec. for the Polygon IDDIDmethod.

VCs contain a “proof” (i.e., some cryptographic data that can be verified to make sure of some
statement) field that stores one or both of the issuance proofs. Also, VCs contain Non-revocation
proof (see below).

Verifiable Credential proof types

● Signature issuance proof (SIG)
It proves that the specific issuer has issued the claim (VC) by a BJJSignature, where “BJJ” is a
BabyJubJub elliptic curve. That means the issuer isn’t obligated to add the claim to the issuer’s
Claims tree.

● Merkle tree issuance proof (MTP)
It proves that the specific issuer has issued this claim (VC) by a Merkle tree proof that this
claim is included in the issuer’s ClaimsMerkle tree, so in the issuer’s state.

● Non-revocation proof (NRP)
It proves that the claim hasn’t been revoked by an issuer. Namely, the claim’s revocation nonce
(revocation id) isn’t included in the issuer’s Revocation tree.

The claim issuance proof can be received only once by a holder from the issuer. Because whenever a
claim was signed, or it was included in the issuer’s state, it means that you can use the same signature
whenever and the claim can’t be removed from the issuer’s Claims Merkle tree even by the issuer. In
contrast to the Non-revocation proof type, that must be updated every time during a Zero-Knowledge
Proof generation.

Usually, an issuer first sends a VC to a holder only with Sig proof, but after some time, when a state
that includes the holder’s claim was published, the issuer sends a notification to the user that he can
update a VC with anMTP proof.

Zero-Knowledge Proof (ZKP)

One of the most important features of the Iden3 protocol, enabling most of the magic, is
Zero-Knowledge Proof technology. It is a method for one party to prove a statement's truth to another
party without revealing any other information apart from the statement's validity. For illustrative
purposes, let's consider the following example:

https://github.com/0xPolygonID/did-polygonid
https://eips.ethereum.org/EIPS/eip-2494

7

Say, you want to enter a nightclub, and you need to prove to the bouncer that you are over 18. But you
don't want to reveal your name, address, or anything else irrelevant to him. With Zero-Knowledge
Proof, you can prove that you hold the key that belongs to an identity that the state says is over 18
without revealing anything else about that identity.

Iden3 ZKP Circuits

Here are the main circuits written and used by the Iden3 Identity protocol.

● Auth
The circuit is mainly used by holders for identity authentication. Prove that the user is an
identity owner.

● StateTransition
The circuit is used within state transition by an issuer. Prove that the state was changed
correctly and changes correspond to the protocol. The changes can be either claim issuance or
revocation that require the issuer’s state changes.

● CredentialAtomicQueryMTPV2
The circuit is mainly used by holders for proving some statements about verifiable credentials,
like, that an “age” field is greater than 18.

It uses the verifiable credentials’Merkle tree issuance andNon-revocation proofs.

● CredentialAtomicQuerySigV2
The circuit is mainly used by holders for proving some statements about verifiable credentials,
like, that an “age” field is greater than 18.

It uses the verifiable credentials’ Sig issuance andNon-revocation proofs.

The CredentialAtomicQueryMTPV2 and CredentialAtomicQuerySigV2 have two
implementations: for on-chain and off-chain verification. The on-chain has some of the public data
hashed, which reduces the size of input data for verification and the verification price.

8

What can you achieve using Iden3 and PolygonID?

1. Privacy using Zero-Knowledge Proofs: An Identity Holder can keep an identity's personal
data private using zero-knowledge proofs. During the process of VСs verification, it just needs
to show proof that he owns a VC that matches certain criteria without letting the Verifier
know of the actual VСs. Another aspect of privacy comes from the fact that the Issuer would
not be able to track the usage of VCs by an individual once it has been issued.

2. Off-Chain and On-Chain Verification: Verification of proofs can be done either off-chain
or on-chain via Smart Contracts. For example, developers can set up a contract that airdrops
tokens only to users that meet certain criteria based on their credentials’ data.

3. Self-Sovereignty: Polygon ID renders self-sovereignty in the hands of the user. The user is the
only custodian of his/her private keys; user-controlled data can be shared with third parties
without taking any permission from the Issuer that has issued the VCs to the user.

4. Transitive Trust: A transitive trust between the actors of the triangle means that the trust
between two entities in one domain or context can be easily extended to other domains or
contexts. For instance, the information generated by an Issuer can be conveniently used by
more than one Verifier without asking for permission. Along similar lines, an Identity Holder
can build up his/her trust by collecting multiple credentials from different Issuers in one digital
wallet.

9

Base architecture

It must be noticed that Iden3 and PolygonID mainly use Golang language for the Back-End part,
Solidity language for the EVM-compatible Smart contracts, JavaScript language for the web, and
Flutter framework for mobile applications.

You can find libraries for almost everything that you need for the protocol realization in Iden3 and
PolygonID GitHub repositories.

Core services

We can single out some main figures that participate in the different flows:
● An Issuer service - a centralized service that is controlled by some organization and responsible

for VCs that contain some specific data, issuance for identities that fulfill certain conditions.
● A Verifier - an instance that can verify a ZKP about some data stored in VSc provided by an

Identity and based on the result, makes a decision. It can be either a Smart contract or a
Back-End service.

● A Wallet (Holder) - an application that can create and manage a user’s Identity. Under the
management, Identity creation, private data storing, VCs storing, proof generation, etc., is
hidden.

The identity and claims management are different for the issuer and wallet.

https://github.com/iden3
https://github.com/0xpolygonid

10

Issuer

The back-end service, or set of services, includes both public and private APIs. These APIs are
responsible for implementing all the logic related to identity and claim management, such as state
transitions and revocation.

The public API methods are designed for interactions with holders and verifiers, while the private ones
are meant for handling claims and identity management.

It is advisable not to overly expand the Issuer logic beyond the protocol to avoid unnecessary
complexity in the service. Instead, the Issuer should be treated as the method responsible for issuing the
claim. In contrast, an external service should handle the logic of determining who will receive the claim
and conducting different user verifications.

Resources

The issuer service is resource-demanding. Usually, it needs to publish the issuer’s state on-chain once
per some period of time. During the publishing process, it generates a State Transition
Zero-Knowledge proof that requires large enough resources for efficient processing.

Requirements

● The service MUST be able to create and manage identity. Identities management consists of
storing identities’ info in a database. Retrieving the previous identity on service start, correctly
managing its Merkle Trees.

● The service MUST be able to read the claims schemas, create and manage claims, and return
verifiable credentials by request.

● Claims management implies adding claims into either a Claims Merkle tree or Revocation
Merkle Tree and its versioning.

● The service MUST be able to publish the issuer’s state on-chain by either request or in some
configured period.

● The service MUST implement the Iden3 protocol and API for interactions with holders. It
will provide the ability to retrieve an issued claim for the holder and update its non-revocation
proof.

11

Polygon ID issuer node

Polygon ID has a well-maintained open-source implementation of the issuer. It has every feature
presented in the Iden3 protocol, contains a set of services responsible for different parts, and has an
admin panel.

With the admin panel, you can easily add new claims schemas, directly issue VCs, or create convenient
QRCodes for claim issuance that mobile applications can use. It is also possible to manage already
issued VCs.

The back-end part provides an easy-for-use API that is fully documented. It provides the ability to
create several identities and conveniently manage them, issue verifiable credentials and communicate
with users’ wallets.

Services use Vault with an extension that improves security by managing the keys so that anyone can’t
receive direct access to keys but only can sign the messages if they have an access key.

Redis is used for caching the schemas we use in the Issuer Node. The schemas are downloaded from
IPFS (or any other source) and stored on Redis. This way, every time the Issuer Node issues a
Credential, it doesn't need to fetch the schemas from an external source; it can fetch it directly from
Redis. This boosts the performance of the application.

https://github.com/0xPolygonID/issuer-node

12

Custom issuer

Also, it is possible to develop an issuer service with any custom logic based on the Polygon ID issuer
node or from scratch using Iden3 libraries that implement all the low-level cryptography and protocol
primitives like identities and claims management.

It is highly recommended that a custom issuer has backward compatibility with the Iden3 protocol.

https://github.com/iden3

13

Wallet (Holder)

A digital wallet is software that can hold and manage users' Credentials. Based on the principles of
Self-Sovereign Identity (SSI) and cryptography, a wallet helps its Holder share data with others
without exposing any other sensitive private information stored on it. Only the wallet holder can
decide which information to share with other entities and what needs to remain private.

The wallet is a front-end or mobile UI application representing the user's identity. It includes necessary
logic for managing identities, such as creating, removing, importing, and exporting them. Additionally,
it handles the logic for managing claims, such as receiving claims from an issuer, removing claims,
displaying them in a human-readable format, and utilizing them for user purposes. Moreover, it can
generate Zero-Knowledge proofs for certain statements about the information it contains.

Optionally it may contain implementation for the profile nonces, which provides additional user
anonymity.

It is important to know that Iden3 uses another from Ethereum elliptic curve called BabyJubJub. So,
the cryptography is different from the default.

Requirements

● The wallet MUST be able to create and manage identity. Identities management consists of
creating, removing, importing, and exporting it. Additionally, it involves utilizing the Profiles
feature and supporting different networks and DIDs.

● The wallet MUST implement the Iden3 protocol for interactions with issuer and verifiers.

● The wallet MUST be able to generate Auth, CredentialAtomicQueryMTPV2, and
CredentialAtomicQuerySigV2 proofs and use them for off-chain or on-chain verification.

● The wallet MUST integrate with Metamask or any other wallet that can send transactions
on-chain for proof verification.

Polygon IDWallet

Polygon ID offers a mobile wallet that fully implements all the features of the Iden3 protocol. You can
easily find and download it from the Play Market for Android devices or the App Store for iOS devices.

The Polygon IDWallet supports the following features:

14

● Privacy by design and Self-sovereignty: The user fully controls his/her identity data and
exchanges credentials with other identities without needing an intermediary or centralized
authority.

● Open and Permissionless.
● Fetching, storing, and managing credentials.
● Generating cost-optimized zero-knowledge proofs for credentials verification.
● Communication with Issuer and Verifier.
● Identity recovery using seed phrase.

It is worth noticing that, to comply with the principles of the Self-Sovereign Identity (SSI), all the
credentials are stored only locally on the user’s wallet and are not stored on-chain; this ensures strong
privacy for the sensitive data related to the user’s credentials.

CustomWallet

The wallet can be built in several ways. For example,
● Mobile application (Android, iOS)

15

For mobile applications, there is Flutter-SDK which allows to integrate Polygon ID identity
system into Flutter apps.

● Metamask extension (Snap)
Snaps is an open-source system that allows anyone to safely extend the functionality of
MetaMask, creating new web3 end-user experiences. So it is possible to build digital Identity
right into the Metamask just as the default browser extension.

● Web wallet (Not recommended)
For the Web wallet, you'll find an abundance of JS libraries that provide every essential
component of digital identity in alignment with Iden3. These libraries offer the necessary tools
and functionalities to manage digital identities within the Web environment efficiently.

As you can see, both Iden3 and Polygon ID offer distinct SDKs and libraries that make it convenient to
build various types of wallets from the list mentioned earlier. These SDKs and libraries provide
developers with the necessary tools and resources to create wallets tailored to their specific
requirements, ensuring flexibility and ease of implementation.

https://github.com/0xPolygonID/polygonid-flutter-sdk
https://github.com/orgs/iden3/repositories

16

Verifier

The verifier is any platform that wants to authenticate users based on their credentials. Verifiers can be
on-chain (smart contract) or off-chain (back-end service).

A verifier can provide Parameters that need to be verified using Query Language that can be transferred
into a QRCode or deep-linking. The query can use several basic operators:

● Must be a verified human to vote for a DAO-specific proposal - equals (operator 1).
● Must have been born before 2000-01-01 to access an adult content website - less-than

(operator 2).
● Must have a monthly salary greater than $1000 to get a loan - greater-than (operator 3).
● Must be an admin or a hacker of a Dao to enter a platform - ìn (operator 4).
● Must not be a resident of a country in the list of blacklisted countries to operate on an

exchange - not-in (operator 5).
● Must not be a resident of a specific country - not-equal (operator 6).

Once the wallet application receives a query, it can use one of the requested circuits to prove the
statement. After generating the proof, the wallet can transmit it either as an on-chain transaction or
through a callback URL specified in the query to the back-end verifier service.

The verifier contract is generated from the circuits and trusted setup, but the business logic is based on
the contract wrapper.

Iden3 contracts system

State

At the heart of the Iden3 contract-side system is the State contract. It is used for storing information
about the user's states, which makes state transitions. The GIST (Global Identity State Tree) is also
stored and created on this contract. Any identity can transit its state on-chain, but in most cases, states
are published only by issuers. This action is necessary to be able to validate the
CredentialAtomicQueryMTPV2OnChain and CredentialAtomicQuerySigV2OnChain
circuits. To transit the state, you must call the transitState function, which takes the following
parameters:

● id - identity’s ID that transits state
● oldState - previous state of this identity
● newState - identity’s new state
● isOldStateGenesis - whether the previous state is a genesis state or not

https://0xpolygonid.github.io/tutorials/verifier/verification-library/zk-query-language/

17

● ZKP data - parameters for verification of ZK proof of StateTransition scheme

ValidatorContracts

Validator contracts are the next layer of the protocol. The State contract is universal and can be one for
the whole network, but there can be many validators.

The Iden3 protocol has an abstract CredentialAtomicQueryValidator contract that implements the
ICircuitValidator interface. This contract has functions to get the circuit identifier index or the
challenge index in the list of public ZK proof’s outputs, but the main function of this contract is
verify.

The verify function accepts a ZK proof (public signals and a, b, c points) and the hash of the query to
verify a circuit.

During verification is checked:
1. The ZK proof itself.
2. Presence of GIST root from the proof in the State contract.
3. Presence of identity’s id and identity’s state from the proof in the State contract.
4. Checking that issuerClaimNonRevocationState is the current issuer's state. If it is not, the

contract checks if the state is in the period when the proof is still considered valid.
To verify the ZK proof, a verifier contract is used, which can be generated using SnarkJS from the
desired circom schema.

ZKP Queries hash

ZKPQuery hash is required for the validator to check that the right claim’s fields are checked in the ZK
proof.

The logic for storing and retrieving a ZKP Query is placed in the ZKPVerifier contract from Iden3.
The ZKPQuery structure is placed in ICircuitValidator, and contains the following fields:

● schema - identifier of the schema of the claim
● claimPathKey - path to the field in the merklized claim that will be checked
● operator - operation to check the value (EQ, NON, IN and etc.)
● value - an array of values to which the value from the claim will be compared.
● queryHash - ZK Query hash
● circuitId - circuit name

The ZKPQuery hash is calculated on the contract as follows:

https://github.com/iden3/contracts/blob/master/contracts/validators/CredentialAtomicQueryValidator.sol
https://github.com/iden3/contracts/blob/master/contracts/interfaces/ICircuitValidator.sol
https://github.com/iden3/contracts/blob/master/contracts/verifiers/ZKPVerifier.sol
https://github.com/iden3/contracts/blob/master/contracts/interfaces/ICircuitValidator.sol

18

queryHash = Poseidon(schema, slotIndex, operator, claimPathKey,
claimPathNonExists, values sponge hash)

Where slotIndex and claimPathNotExists are always zero since the iden3 ZKPVerifier contract only
works with merklized claims.

ZKPVerifier

The Verifier contract is the top layer of the Iden3 protocol, with which the user or other contracts
interact directly.
Iden3 provides a ZKPVerifier contract that has the functionality to fully validate the user's claim using
the CredentialAtomicQueryValidator contract described above. This is just an example
implementation, so a different verifier can be written for each specific case.

Conclusions on the basic implementation

This implementation is great when your protocol supports only one network, as it is quite difficult to
scale to other networks. All issuers will need to duplicate their states to all supported networks, which
is quite complex and expensive.

https://github.com/iden3/contracts/blob/master/contracts/verifiers/ZKPVerifier.sol
https://github.com/iden3/contracts/blob/master/contracts/verifiers/ZKPVerifier.sol

19

How to dive into digital identity?

In this section, we consider that you already know for what you need a digital identity.

There are 3 obvious use cases:
● Develop an issuer or use an existing one for verifiable credential issuing.

The issuer service’s endpoints for verifiable credentials issuance is considered to be either
private or use some authentication. So, there are two ways the issuance can be organized:

○ There can be administrators that, via an admin panel will directly issue claims to the
end users. Sounds not good, doesn’t it?

○ There might be a service that already exists within the system where the logic of
issuance is placed. This service would act as a KYC service, determining who can receive
claims based on the user's information. It will then utilize a method from the issuer
service to issue the claim.

If the Polygon ID issuer-node is used, any code changes can be done to achieve a desirable
result. If was chosen a way to develop a custom issuer, there must be specific requirements,
what should be done, and which features should be included.

After preparing the issuer service, we should create schemas for the desired claims. This
includes determining the number of schemas required, assigning suitable names to each
schema, specifying the names and types of fields within them, and clarifying the purpose of the
stored data.

Once the issuer service is deployed, the schemas are prepared, and the claim issuance process is
defined, we can consider the issuer environment as ready.

● Develop a wallet for verifiable credentials holding or embed into an existing one.

First of all, the type of wallet should be defined. As well as features, ZKP circuits and networks
will be supported. Then the target application can be developed.

● Embed a verifier into an existing system to verify Zero-Knowledge proofs based on any stored
in verifiable credentials user data.

The verifier can operate either on-chain or off-chain. In both cases, it is necessary to specify
what will be verified and the circuits that will be used. In the on-chain scenario, the verifier
contracts must be generated from circuits.

20

For on-chain verification, a query for verification requests should be defined and made
accessible to the end user's wallet. This enables users to initiate verification processes. The
query can be accessible, for example, via QRCode for mobile applications or via method call
for Snap extension.

After that, a business logic that will be executed after a ZKP verification can be implemented
and deployed.

21

Multichain with Rarimo

Prerequisites

In the basic Iden3 protocol, only one chain is supported. If you use the Polygon ID ecosystem, this
chain is obviously either Polygon Mainnet or Polygon Mumbai for test purposes. You can run the
entire ecosystem on another network, like Ethereum, but VCs issued on Polygon won't be accessible
for proof generation on Ethereum.

Every proof about the data stored in VC verifies that the VC was issued and still wasn’t revoked by a
specific issuer. This verification is achieved by checking the inclusion or exclusion of certain data in the
issuer's state, which is publicly available on-chain. Therefore, if the issuer's state has not been published
to the Ethereum network, the proof cannot be verified using the Ethereum chain.

Of course, an issuer can publish the state on every chain, but it will be costly due to ZKP verification.

Solution

Rarimo cross-chain protocol allows users to transfer data across supported chains. For example, it can
be a token transfer, identity transfer, or just a text message transfer. Such logic relies on several Rarimo
components: decentralized oracles, decentralized ECDSA threshold signature producers, and
Cosmos-based blockchain core.

After adding EVM compatibility into the Rarimo core, it receives an opportunity to deploy Solidity
smart contracts directly into the blockchain. So, suppose identity providers use the Rarimo chain to
publish their Iden3 states instead of others. In that case, they receive instant compatibility with
cross-chain features in a co dates price.

After publishing state updates on the state smart contract (Rarimo chain uses vanilla iden3 smart
contract so that it will be compatible with all existing issuers) core system will immediately initiate the
signing flow, and after several minutes, the signed by the threshold signature providers message with
last state information will appear in Rarimo core state.

The caller side (wallet) can check and submit the signed information to any lightweight state smart
contract on any supported EVM chain. The signed data contains compacted and easy-to-verify
information about the issuers’ state transitions. After that, user identity proofs become available on
that chain, and anyone who wants can integrate their Verification smart contracts to use them.

22

And one more thing: all issuer states will be additionally aggregated into one Merkle tree (aka. States
Merkle tree), so, by updating once a global identity state, all other states from all other issuers will also
be updated. It significantly reduces the amount and cost of transactions to be published on target
chains.

How to achieve cross-chain?

It is worth noting that the cross-chain feature doesn’t break the backward compatibility with the basic
Iden3 protocol. It is just an extension.

Issuer service particularities

The service must have an endpoint to return the claim’s Merkle tree issuance proof by the VC’s
identifier.

The Merkle tree issuance proof, which is stored in the proofs field of the Verifiable credentials JSON
structure, usually within an index 1, must have an additional field id that stores the link that can be
used to receive an updated claim’s Merkle tree issuance proof.

Wallet changes

The new endpoint, added to an issuer’s service, is used the same as the one that returns a claim’s
Non-revocation proof. So, when the user wants to prove something with
CredentialAtomicQueryMTPV2 ZKP type or its on-chain version, they request a new claim’s
Merkle tree issuance proof that is tight to the last issuer’s state by the corresponding link.

Also, a wallet has to implement the following flows to support the calling of the lightweight state smart
contracts on target chains:

1. Updating the state with lightweight smart-contract on the direct chain.
2. AddingMerkle tree proof of the issuer’s state inclusion into the States Merkle tree, among with

a main ZKP.

State updating requires fetching the state data from Rarimo and target original chain StateV2 smart
contracts, and if they are not equal - fetching witness (ECDSA threshold signature + Merkle tree
proof) from Rarimo core RPC and submitting the corresponding transaction into the target chain
light-weight State contract.

Merkle tree proof verifies that the requested state is included in the aggregated contract state (States
Merkle tree).

23

Both witness and state inclusionMerkle proof can be fetched from Rarimo’s backend systems.

Smart contracts particularities

Main motivation

As mentioned above, the standard iden3-based system works without problems within a single
network but it has problems with scaling to other networks. The solution to this problem is the
Rarimo network whose validators can issue different TSS signatures that can be easily verified on any
EVM-like network.

State and LightweightState contracts

Standard Iden3 State contract is deployed on the Rarimo network. The interaction with the contract
on the Rarimo chain and EVM is the same.

All other supported networks will use the LightweightState contract, which stores less data but
enough for validator contracts.

LightweightState has a signedTransitStatemethod that takes the following parameters:
● identitiesStatesRoot - identities’ states MerkleTree root.
● gistData - GIST data from the main State contract.
● proof - TSS signature and all necessary associated data.

The main problem was that the core network can have a huge number of identities, so it would be very
expensive to simply migrate all the stats of all identities. To solve this problem in Rarimo validators,
there is a special oracle module that monitors events on the main State contract (that is deployed in the
Rarimo network) and builds a MerkleTree whose leaves store the actual issuerId, issuerState, and
createdAtTimestamp for each issuer. With this Merkle tree, we can confirm that there is a particular
identity with the desired identity state and state publish timestamp.

Due to the added logic withMerkleTree, the LightweightState has a verifyStatesMerkleDatamethod
that can be used to verify that the identity data is correct.

QueryValidator

Similar to the main iden3 protocol, we have QueryValidator contracts that are needed to verify a ZK
proof. Due to the usage of the LightweightState contract on the secondary networks, it was necessary
to modify the validator contracts as well, namely the verify method. This method on the updated

24

contract takes one additional parameter - the StatesMerkleData structure from the
ILightweightState interface.

The StatesMerkleData structure has the following fields:
● issuerId - issuer id.
● issuerState - issuer's state.
● createdAtTimestamp - a timestamp when the state was transited.
● merkleProof - identities’ states MerkleTree proof.

Inside the method, GISTRoot and queryHash are checked as in the original contracts. There is also a
check that the ZK proof doesn't use a deprecated issuer state.

ZKPQueriesStorage

ZKPQueriesStorage was created for convenient storage and retrieval of ZKPQueries. It can be used
to set different ZKPQueries by identifiers. Also, the contract has methods for retrieving the necessary
data and separate functions for calculating queryHash.

Verifier contracts

The verifier contract has changed only slightly, with only one additional mandatory parameter added
in the form of a StatesMerkleData structure. The verifier contract can get a queryHash with the
required ID, so to verify the user's ZK proofs for a particular claim it just needs to call the verify
method on theQueryValidator contract.

Conclusions

This solution is quite complex to implement technically, but with minor changes for the consumer, a
fully working version of the cross-chain identity protocol can be achieved, which is a great result.

25

Appendix A. Sparse Merkle Tree operations and its usage
Sparse Merkle Tree (SMT) is a key-value binary Merkle tree widely used in the Iden3 protocol. It differs
from the default Merkle tree in that, firstly, it has a key-value structure (two nodes with the same key
can’t exist in the tree at the same time, and the particular key always takes the same position in the tree),
and secondly, if we reach an empty node (while inserting a new leaf), without going through the whole
key, we can paste it in place and not go below.

What is a node?

The SMT has 3 types of nodes: empty, leaf, and middle. The node contains the key-value pair, a hash
of the node (that depends on the node’s type), and its two children hashes.

● Empty node - a precomputed node with a <0,0> key-value pair, hash of zeros, and no children.
● Leaf node - a node with key-value pair and Hash(1, key, value). Leaf nodes don’t have children

nodes.
● Middle node - a node with two children nodes (not empty). Stores the hash of children’s hash

concatenation (i.e., Hash(LeftNodeHash, RightNodeHash)). The middle node at height 0 is
called the root node, which “describes” the whole tree.

In visualization, we mark the root node as “Root”, the middle node as “Ni” and the leaf node as “Li”.
We mark an empty node as a leaf node with <0,0> key-value pair. The hash function is marked as
H(values).

26

Addition of the node to the tree

Basically, we go through the whole tree (from the root) using “path” (key in binary little-endian
representation) until we find an empty node or a leaf node. If a leaf node is found, it will be split, and
they will be inserted at the level where their bits differ.

For example, we have a tree below with two nodes (their keys are 2 and 1). We insert a <4,8> key-value
pair (4 in LE is 0010…0), and the L0 node splits into two leaves (because their next bits differ).

Deleting the node from the tree

Delete function works inversely to the addition function. It finds a node with a specified key, removes
it, and recursively rebuilds the whole tree and the root. This functionality is available but not used in
Iden3 trees.

27

Updating the node

You can update the node's value with a certain key. For example, we can update a node <4,8> to value
10 (so it will be <4,10>). It will change the hash of the node and all nodes higher (subtree and the root
root).

Sparse Merkle Tree Proofs

Sparse Merkle Tree can create two types of proofs - inclusion and non-inclusion (sometimes called
exclusion).

To create such proofs, we go from the root (using the provided key) until we reach a leaf (or an empty
node), and every time we choose a node, we store the sibling node’s hash that we haven’t chosen (our
tree is binary, so every time we choose the left path, we store the hash of the right node and so on).

Assume, we want to prove that an entry with key 4 with value 8 exists in our tree (in the picture
below). Because our key in the binary LE presentation is 0010…0 we choose the left path from the root
twice (storing all right nodes’ hashes as an array) and find the leaf node. Then we check whether
provided and stored keys are the same, in the positive case, we return the value of this node, siblings
array (in our case, it’s all right nodes’ hashes, i.e. hash of L1 and L0 at the picture) and this is called
“proof of inclusion”.

In the negative case (i.e. when keys are different, for example, if there was key 8 instead of 4) it is called
“proof of non-inclusion”. We provide node <8,8> as an “auxiliary node” and all siblings till the root,
saying that this node is placed instead of the one we want.

28

You can notice that we check only the “key” existence. This is because “value” is not often used in the
Iden3 protocol, but this check can be done on the user side. The user, asking for the MTP of a certain
node, knows its value, so receiving the siblings, he can calculate the hash of the node and check the
MTP. If the root doesn’t match, then this node doesn’t exist.

29

Appendix B. Explanation of schemas in the Iden3 protocol

Most circuits have input and output parameters. Some inputs are public as shown next to their
names in the tables, others are considered private (only a prover knows them).All output parameters
are public, i.e. the prover must provide them to the verifier.

Here you can find a visualization and explanation of the main circuits in the Iden3 protocol. We can
say that all circuits use smaller sub-circuits. In the visualization, their order was changed to make it
visually cleaner, but every sub-circuit has a number in the top left corner, which indicates its “real”
order. The upper right corner has additional inputs from other sub-circuits.

Circuits are used to generate proofs that state something. We use 6 main circuits, which are explained
and visualized in this document:

1. AuthV2 - authentication of the user. Proof generated with this circuit will state that the prover
knows his private key.

2. StateTransition - used for on-chain state transition (when identity state changes, it should be
updated on-chain).

CredentialAtomicQuery circuits are used for most “activities” with claims. You can prove that you’re
at least 18 years old or that you own a certain NFT from the list without disclosing which one and
many other things. It should be noted, that all of them receive requestID and issuerID as inputs. These
inputs are not used in any subcircuit. RequestID is needed to identify requests from the verifier to the
prover (and to store the query) and IssuerID can be used to block certain issuers (in the Iden3 protocol
anyone can be an issuer) or vice versa, to “whitelist” certain issuers. There are 4 variations of these
circuits, which differ in issuance method (how the claim was issued) and where the proof is checked

30

(off-chain variations also interact with the blockchain, but they only read information from it and do
not write, so no on-chain updates are performed):

3. СredentialAtomicQueryMTPOnChain - uses MTP issuance method and is verified
on-chain in the smart contract.

4. СredentialAtomicQueryMTPOffChain - uses the MTP issuance method and is verified
off-chain at the back-end.

5. СredentialAtomicQuerySigOnChain - uses the Signature issuance method and is verified
on-chain in the smart contract.

6. СredentialAtomicQuerySigOffChain - uses the Signature issuance method and is verified
off-chain at the back-end.

The MTP issuance method updates the state of the issuer and should be done on-chain (state
transition should be performed), while Signature issuance can be done off-chain without updating the
state.

31

AuthV2

At the high level, this circuit checks that the prover owns an identity. It can be used to give users access
to the applications, and it is usually done in this way. Also, it can be used in other circuits as a
sub-circuit, which is done in credentialAtomicQuery on-chain variations.

Scheme visualization

Inputs

Public /
private

Input name Description

Public challenge message that should be signed by the prover to
prove identity ownership

Public gistRoot root of the GIST stored on-chain

Private claimsTreeRoot prover’s claims tree root

Private authClaimIncMtp [40] auth claim inclusionMTP inside prover’s claims
tree

Private authClaim[8] prover’s auth claim

Private revTreeRoot prover’s revocation tree root

Private authClaimNonRevMtp[40] auth claim nonce exclusionMTP inside prover’s
revocation tree

Private authClaimNonRevMtpNo
Aux

flag that indicates whether to check the auxiliary
node or not (related to revTreeRoot)

Private authClaimNonRevMtpAu
xHi

auxiliary node index (key)

https://prnt.sc/vDQ7a3nitg2V

32

Private authClaimNonRevMtpAu
xHv

auxiliary node value

Private rootsTreeRoot prover’s roots tree root

Private challengeSignatureR8x signature of the challenge (Rx point)

Private challengeSignatureR8y signature of the challenge (Ry point)

Private challengeSignatureS signature of the challenge (S point)

Private userState prover’s identity state

Private genesisID prover’s genesis identifier

Private gistMtp[64] prover’s state inclusionMTP inside the global
state

Private gistMtpNoAux flag that indicates whether to check the auxiliary
node (related to gistRoot)

Private gistMtpAuxHi auxiliary node index (key)

Private gistMtpAuxHv auxiliary node value

Private profileNonce random number, stored by the user

Outputs

● userID - equals genesisID if provided profileNonce is 0 otherwise equals hash(ID, nonce).

Let’s explore this circuit part by part (it is desirable to read it in parallel with the visualization):

1. IdOwnership circuit receives a lot of parameters (challenge, claimsTreeRoot,
authClaimIncMtp, authClaim, revTreeRoot, authClaimNonRevMtp, auxiliary information

33

for nonRevocation, rootsTreeRoot, challengeSignature data, and userState) as inputs, and it
verifies:

a. The validity of the prover’s auth claim and its existence in the Claims tree.
b. Non-revocation of the auth claim.
c. Prover's signature on the challenge number.
d. Finally, verification of the prover's identity state is performed (whether it is genesis or

not and whether it exists on-chain).

The circuit uses VerifyAuthClaimAndSignature sub-circuit to check (1), (2), (3), and
checkIdenStateMatchesRoots sub-circuit to check (4).

2. CutId receives the prover’s genesisID as input. This circuit “cuts” unnecessary information
from genesisID and outputs it in bit format. Concretely, it cuts type and checksum from the
identifier.

3. CutState receives userState as input. It “cuts” unnecessary information from the IS and
outputs it in bit format. Concretely, it cuts unnecessary zeros (due to how the Poseidon hash
function is implemented, it outputs 32 bytes, but the actual hash is only 27, and the other 5 are
zeros).

4. IsEqual receives cutId and cutState outputs as inputs (cropped state and cropped genesisID).
It checks whether userState is genesis or not.

5. Poseidon is a realization of a SNARK-friendly hash function. In AuthV2 circuit it receives as
input prover’s genesisID to calculate the key in the tree (hash of the genesisID). It is not a
theme of this document, but you can read more about the Poseidon hash function here and
here.

6. SMTVerifier receives gistRoot, userState, gist MTP, auxiliary information for the gist MTP,
isEqual output (determines whether inclusion or exclusion should be checked), and Poseidon
output. Also, it receives the parameter “enabled” as 1 (hardcoded), which determines whether
verification should be performed or not. This circuit has 11 components (so it’s a bit
complex), but at the high level, it verifies an inclusion or exclusion of some data (hash of the
key-value pair) in the tree (using root, MTP, and auxiliary information if needed). In the
AuthV2 circuit, it verifies that either the prover’s identity is genesis and does not exist in the
GIST or it’s not genesis and should be in the GIST (and so, checks that it exists).

7. SelectProfile receives genesisID and profileNonce as inputs. If profileNonce is zero, it outputs
genesisID, otherwise, it will compute profileID and output it from the circuit.

https://www.poseidon-hash.info/
https://eprint.iacr.org/2019/458.pdf

34

StateTransition

This circuit checks the correctness of the identity state transition execution by taking old and new
identity states as inputs. This circuit is used every time the identity updates its state. Verification is
performed in the smart contract.

Scheme visualization

Inputs

Public /
private

Input name Description

Public isOldStateGenesis flag that indicates whether oldUserState is
genesis or not

Public userID prover’s genesis identifier

Public oldUserState prover’s identity state before the transition

Public newUserState prover’s identity state after the transition

Private claimsTreeRoot prover’s claims tree root

Private authClaimMtp[40] auth claim inclusionMTP inside prover’s claims
tree

Private authClaim[8] prover’s auth claim

Private revTreeRoot prover’s revocation tree root

Private authClaimNonRevMtp[40] auth claim exclusionMTP inside prover’s
revocation tree

Private authClaimNonRevMtpNo
Aux

flag that indicates whether to check the auxiliary
node or not

https://prnt.sc/FTslWcbi3qx9

35

Private authClaimNonRevMtpAu
xHv

auxiliary node value

Private authClaimNonRevMtpAu
xHi

auxiliary node index (key)

Private rootsTreeRoot prover’s roots tree root

Private signatureR8x signature of the challenge (Rx point)

Private signatureR8y signature of the challenge (Ry point)

Private signatureS signature of the challenge (S point)

Private newClaimsTreeRoot prover’s claims tree root after the transition

Private newAuthClaimMtp [40] auth claim inclusionMTP inside prover’s claims
tree after the transition

Private newRevTreeRoot prover’s revocation tree root after the transition

Private newRootsTreeRoot prover’s roots tree root after the transition

This circuit has no outputs.

Let’s explore this circuit part by part:

1. CutId receives userID as input and cuts unnecessary information from it (concretely, it cuts
type and checksum from the identifier).

2. CutState receives oldUserState as input and also cuts unnecessary information from it.
Concretely it cuts unnecessary zeros (due to how Poseidon implementation works).

3. IsEqual receives cut identifiers (CutId and CutState outputs) as inputs, calculates whether
they are equal or not, and uses the result in the check (1 - IsEqual.output) * isOldStateGenesis
=== 0 (should be equal to 0). This check is performed to make sure that if user’s old state is
genesis, then userID should be derived from that state.

36

4. IsZero receives newUserState as input and checks that it is not zero.

5. IsEqual (another one) receives both user states (oldUserState and newUserState) as inputs and
checks that they are not equal.

6. Poseidon also receives both user states and computes their hash (this hash is used as a
“challenge”, that should be signed by the prover).

7. IdOwnership receives a lot of parameters as inputs: Poseidon output as a challenge,
oldUserState, claimsTreeRoot, authClaimMtp[40], authClaim[8], revTreeRoot,
authClaimNonRevMtp[40], auxiliary information for auth claim non-revocation checks
(authClaimNonRevMtpNoAux, authClaimNonRevMtpAuxHv,
authClaimNonRevMtpAuxHi), rootsTreeRoot, and signature data (SignatureR8x,
SignatureR8y, SignatureS).

It verifies:
a. The validity of prover’s auth claim and its existence in the Claims tree.
b. Non-revocation of the auth claim.
c. Prover's signature on the challenge number.
d. Finally, the prover's identity state is verified (whether it is genesis or not and whether it

exists on-chain).

8. CheckClaimExists receives authClaim, newClaimsTreeRoot, and newAuthClaimMtp as
inputs and checks that authClaim still exists in the new claims tree.

9. CheckIdenStateMatchesRoots receives the user’s new tree roots (newClaimsTreeRoot,
newRevTreeRoot, newRootsTreeRoot) and newUserState as inputs and checks that the roots
match the user’s new state.

37

credentialAtomicQueryMTPOnChain

This circuit checks that a claim issued to the prover (and added to the issuer's Claims Tree) satisfies a
query set by the verifier, and the verification is performed in the smart contract in this case.

Scheme visualization

Inputs

Public /
private

Input name Description

Public requestID an identifier of the request

Public issuerID issuer’s genesis ID

Public gistRoot root of the GIST, that is stored on-chain

Public challenge message that should be signed by the prover (to
prove control of an Identity)

Public issuerClaimIden

State

issuer’s Identity State (at the moment of the
claim issuance)

Public isRevocation

Checked

flag that indicates whether claim revocation
should be checked or not

Public issuerClaimNonRev

State

issuer’s Identity State that is used in the non
revocation checks (potentially should be equal

to the on-chain one)

Public timestamp current time

Private authClaim[8] prover’s auth claim

https://prnt.sc/IZ25SinTHYQm

38

Private authClaimIncMtp

[40]

MTP of the auth claim inclusion inside prover’s
claims tree

Private authClaimNonRevMtp[40] MTP of the auth claim exclusion inside prover’s
revocation tree

Private authClaimNonRevMtpNo
Aux

flag that indicates whether to check the auxiliary
node (in the non-revocation check)

Private authClaimNonRevMtpAu
xHi

auxiliary node index (key)

Private authClaimNonRevMtpAu
xHv

auxiliary node value

Private userGenesisID prover’s genesis identifier

Private challengeSignature R8x signature of the challenge

(Rx point)

Private challengeSignature

R8y

signature of the challenge

(Ry point)

Private challengeSignature S signature of the challenge

(S point)

Private profileNonce random number, stored by user (0 if profile isn’t
used)

Private gistMtp[64] prover’s state inclusionMTP inside the global
state

Private gistMtpAuxHi GIST auxiliary node index (key)

39

Private gistMtpAuxHv GIST auxiliary node value

Private gistMtpNoAux flag that indicates whether to check the auxiliary
node or not

Private claimSubject ProfileNonce nonce of user’s profile that claim is issued to
(can be 0)

Private userState prover’s identity state

Private issuerClaim[8] claim data (4 indexes and 4 values, can be
merklized)

Private issuerClaimMtp[40] MTP of the claim inclusion inside issuer’s
claims tree (related to the issuerClaimIdenState)

Private issuerClaim
ClaimsTreeRoot

issuer’s claims tree root (related to the
issuerClaimIdenState)

Private issuerClaim RevTreeRoot issuer’s revocation tree root (related to the
issuerClaimIdenState)

Private issuerClaim RootsTreeRoot issuer’s roots tree root (related to the
issuerClaimIdenState)

Private userClaimsTreeRoot prover’s claims tree root

Private userRevTreeRoot prover’s revocation tree root

Private userRootsTreeRoot prover’s roots tree root

Private issuerClaimNonRev
Mtp[40]

MTP of the claim nonce exclusion inside
prover’s revocation tree

40

Private issuerClaimNonRev
MtpNoAux

flag that indicates whether to check the auxiliary
node (in the revocation exclusion check)

Private issuerClaimNonRev
MtpAuxHi

auxiliary node index (key)

Private issuerClaimNonRev
MtpAuxHv

auxiliary node value

Private issuerClaimNonRev
ClaimsTreeRoot

issuer’s claims tree root (related to the
issuerClaimNonRevState)

Private issuerClaimNonRev
RevTreeRoot

issuer’s revocation tree root (related to the
issuerClaimNonRevState)

Private issuerClaimNonRev
RootsTreeRoot

issuer’s roots tree root (related to the
issuerClaimNonRevState)

Private claimSchema claim schema that was used in the issuerClaim

Private claimPathNotExists flag, that indicates whether inclusion or
exclusion should be checked in the merklized

claim

Private claimPathMtp[32] MTP of the claimPathKey and claimPathValue
pair inclusion in the merklized claim

Private claimPathMtpNoAux flag that indicates whether to check auxiliary
node or not

Private claimPathMtpAuxHi auxiliary node index (key)

Private claimPathMtpAuxHv auxiliary node value

Private claimPathKey hash of path in merklized json-ld claim

41

Private claimPathValue value in merklized json-ld claim

Private slotIndex index of the slot, where value is stored, in case of
not-merklized claim

Private operator query operator (<, >, =, !=, “in”, “not in” or
“nothing”)

Private value[64] value that should be checked.

Outputs

● userID - equals genesisID if provided profileNonce is 0 otherwise equals hash(ID,nonce).
● merklized flag - shows, whether claim is merklized or not.
● circuitQueryHash - hash of the query (because query parameters are private, using a hash

verifier can check that the prover didn’t cheat).

Let’s explore this complex circuit part by part:

1. AuthV2 receives a lot of parameters, so they won’t be written here. This circuit checks that the
prover is owner of the identity and sets userID as output from the circuit. It was explained
better above, it is recommended to read it before you proceed.

2. verifyClaimIssuanceAndNonRev receives issuerClaimIdenState, isRevocationChecked,
IssuerClaimNonRevState, issuerClaim, issuerClaimMtp, all issuer tree roots
(issuerClaimClaimsTreeRoot, issuerClaimRevTreeRoot, issuerClaimRootsTreeRoot),
issuerClaimNonRevMtp, auxiliary information for non-revocation check
(issuerClaimNonRevMtpNoAux, issuerClaimNonRevMtpAuxHi,
issuerClaimNonRevMtpAuxHv) and non-revocation trees
(issuerClaimNonRevClaimsTreeRoot, issuerClaimNonRevRevTreeRoot,
issuerClaimNonRevRootsTreeRoot) as inputs.

It verifies:
a. claim is included in the claims tree;
b. issuer’s claims tree root is included in issuer’s identity state;
c. non-revocation of the claim (through nonRevMtp and another state);
d. issuer’s revocation tree root is included in another issuer idenState

(NonRevIssuerState).

42

We use two identity states because once the claim is issued, it will be in the claims tree forever,
but it may appear in the revocation tree later. It means that user should update only
non-revocation proof, while issuance proof may remain old. Potentially, NonRevIssuerState
should be equal to the on-chain one.

3. verifyCredentialSubjectProfile receives userGenesisID, claimSubjectProfileNonce and
issuerClaim as inputs. It checks that the claim is issued to user’s genesisID or one of its profiles.

4. verifyCredentialSchema receives issuerClaim and provided claimSchema as inputs and
checks that schema inside the claim is equal to the provided schema.

5. VerifyExpirationTime receives issuerClaim and timestamp as inputs and checks that the
timestamp is less than the expiration time in the claim.

6. GetClaimMerklizeRoot receives issuerClaim as input and outputs flag, which states whether
the claim is merklized or not, and value (root that is stored in the claim).

7. SMTVerifier receives merklize.flag as enabled and merklize.output as root parameters,
claimPathKey, ClaimPathNotExists (determines, whether inclusion or exclusion should be
checked), claimPathMtp, auxiliary information (claimPathMtpNoAux, claimPathMtpAuxHi,
claimPathMtpAuxHv) and claimPathValue. Performs verification of merklized claim (checks
that providedMTP, key and value match the root, key-value pair is at the right place and exists)

8. GetValueByIndex receives slotIndex and issuerClaim as inputs and returns chosen (by
slotIndex) value from the claim (i.e. 2 is passed, i2 is returned, 6 is passed - v2 is returned)

9. Mux1 receives merklize.flag as selector, claimValue (from getValueByIndex) as first possible
output and claimPathValue as second. Based on the selector (if it is 0 or 1) it returns first or
second possible output. In simple words, if the claim is merklized - it returns provided value
(claimPathValue), otherwise - it returns the value that was pulled out from the claim by
slotIndex.

10. SpongeHash receives as input only value array (query specific array, can be date of birth,
address, group of addresses, etc) and hashes the whole value array together, using 6 elements in
one hash by default.

SpongeHash is an implementation of the sponge hash function with Poseidon. It is used when
data that should be hashed is huge.

43

For example, we want to hash an array of 23 elements (Poseidon can hash up to 6 elements at
once, due to implementation). SpongeHash will hash the first 6 elements (let’s call the result of
this single procedure such as “finalHash”, or simply f0), add this finalHash as the first value to
the next iteration, and add 5 more elements. It will be repeated until there are no more
elements left (0…6, f0+6…11, f1+11..16, f2+16…21, f3+21…26. We have only 23 elements, so 24
and 25 elements will be zeros) and the output will be the final hash (hash(f4+input[21,22,23] +
two zeros).

11. Query receives “value” array, operator, and mux1.output (value, received from the claim, that
should be checked) and performs operator on other inputs. Value array will contain more than
1 element if “in” (or “not in”) operation is performed, otherwise, only the first (value[0])
element will be checked (e.g., it will contain the age as value[0] and it will be checked that this
age satisfies certain query, for example, it is higher than 18).

12. Poseidon receives claimSchema, claimPathNotExists, claimPathKey, slotIndex, operator, and
output of the spongeHash circuit as inputs, hash them together, and outputs the
circuitQueryHash at the end, which will be checked by the verifier.

44

credentialAtomicQueryMTPOffChain

This circuit checks that a claim issued to the prover (and added to the issuer's Claims Tree) satisfies a
query set by the verifier and the verification is performed by the backend service in this case.

Scheme visualization

Inputs

Public /
private

Input name Description

Public requestID an identifier of the request

Public issuerID issuer’s genesis ID

Public issuerClaimIden State issuer’s Identity State (at the moment of the
claim issuance)

Public isRevocation Checked flag that indicates whether claim revocation
should be checked or not

Public issuerClaimNonRev State issuer’s Identity State that is used in the
non-revocation checks (potentially should be

equal to the on-chain one)

Public claimPathKey hash of path in merklized json-ld claim

Public claimPathNot Exists flag, that indicates whether inclusion or
exclusion should be checked in the merklized

claim

Public claimSchema claim schema that was used in the claim

Public timestamp current time

https://prnt.sc/X1JiVPZsX2KY

45

Public slotIndex index of the slot, where value is stored, in case of
not-merklized claim

Public operator query operator (<, >, =, !=, “in”, “not in” or
“nothing”)

Public value[64] value array that should be checked

Private issuerClaimNonRev
Mtp[40]

MTP of the claim nonce exclusion inside
prover’s revocation tree

Private issuerClaimNonRev
MtpNoAux

flag that indicates whether to check the auxiliary
node (in the non-revocation check)

Private issuerClaimNonRev
MtpAuxHi

auxiliary node index (key)

Private issuerClaimNonRev
MtpAuxHv

auxiliary node value

Private issuerClaimNonRev
ClaimsTreeRoot

issuer’s claims tree root (related to the
issuerClaimNonRevState)

Private issuerClaimNonRev
RevTreeRoot

issuer’s revocation tree root (related to the
issuerClaimNonRevState)

Private issuerClaimNonRev
RootsTreeRoot

issuer’s roots tree root (related to the
issuerClaimNonRevState)

Private issuerClaimMtp[40] MTP of claim inclusion inside issuer’s claims
tree (related to the issuerClaimIdenState)

Private issuerClaim
ClaimsTreeRoot

issuer’s claims tree root (related to the
issuerClaimIdenState)

46

Private issuerClaim RevTreeRoot issuer’s revocation tree root (related to the
issuerClaimIdenState)

Private issuerClaim RootsTreeRoot issuer’s roots tree root (related to the
issuerClaimIdenState)

Private userGenesisID prover’s genesis identifier

Private claimSubject ProfileNonce nonce of the profile that claim is issued to (can
be 0)

Private profileNonce random number, stored by user (0 if profile isn’t
used)

Private issuerClaim[8] claim data (4 indexes and 4 values, can be
merklized)

Private claimPathMtp[32] MTP of claimPathKey and claimPathValue pair
inclusion in the merklized claim

Private claimPathMtpNoAux flag that indicates whether auxiliary node should
be used

Private claimPathMtpAuxHi auxiliary node index (key)

Private claimPathMtpAuxHv auxiliary node value

Private claimPathValue value in merklized json-ld claim

Outputs

● userID - equals user’s genesisID if profileNonce is zero otherwise equals hash(ID,nonce)
● merklized - flag that shows, whether claim is merklized or not

Let’s explore this circuit part by part:

47

1. verifyClaimIssuanceAndNonRev receives issuerClaimIdenState, isRevocationChecked,
IssuerClaimNonRevState, issuerClaimNonRevMtp, auxiliary information for non-revocation
check (issuerClaimNonRevMtpNoAux, issuerClaimNonRevMtpAuxHi,
issuerClaimNonRevMtpAuxHv), issuerClaimNonRevClaimsTreeRoot,
issuerClaimNonRevRevTreeRoot, issuerClaimNonRevRootsTreeRoot, issuerClaimMtp,
issuerClaimClaimsTreeRoot, issuerClaimRevTreeRoot, issuerClaimRootsTreeRoot and
issuerClaim as inputs and checks, that:

a. claim is included in the claims tree
b. issuer’s claims tree root is included in the issuer’s identity state
c. non-revocation of the claim (through “nonRevMtp” and another state)
d. issuer’s revocation tree root is included in another issuer idenState

(NonRevIssuerState), which potentially should be equal to the on-chain one

We use two identity states because once the claim is issued, it will be in the claims tree forever,
but it may appear in the revocation tree later. It means that the user should update only
non-revocation proof, while the issuance claim may remain old.

2. verifyCredentialSubjectProfile receives userGenesisID, claimSubjectProfileNonce, and
issuerClaim as inputs. It checks that the claim is issued to the user’s genesisID or one of its
profiles.

3. verifyCredentialSchema receives issuerClaim and provided claimSchema as inputs and
checks that the schema inside the claim equals the provided schema.

4. VerifyExpirationTime receives issuerClaim and timestamp as inputs and checks that the
timestamp is less than the “expiration time” in the claim.

5. GetClaimMerklizeRoot receives issuerClaim as input and outputs flag, which states whether
the claim is merklized or not, and the root that is stored in the claim.

6. SMTVerifier receives merklize.flag as enabled and merklize.output as root parameters,
claimPathKey, ClaimPathNotExists (determines, whether inclusion or exclusion should be
checked), claimPathMtp, auxiliary information (claimPathMtpNoAux, claimPathMtpAuxHi,
claimPathMtpAuxHv) and claimPathValue. Performs verification of merklized claim (checks
that provided MTP, key, and value match the root, key-value pair is at the right place and
exists)

48

7. GetValueByIndex receives slotIndex and issuerClaim as inputs and returns chosen (by
slotIndex) value from the claim (i.e., 2 is passed, i2 is returned, 6 is passed - v2 is returned)

8. Mux1 receives merklize.flag as the selector, claimValue (from getValueByIndex) as the first
possible output, and claimPathValue as the second. Based on the selector (if it is 0 or 1), it
returns the first or second possible output. In simple words, if the claim is merklized - it returns
provided value (claimPathValue), otherwise - it returns the value that was pulled out from the
claim by slotIndex.

9. Query receives “value” array, operator, and mux1.output (value, received from the claim, that
should be checked) and performs operator on other inputs. Value array will contain more than
1 element if “in” (or “not in”) operation is performed, otherwise, only the first (value[0])
element will be checked (e.g., it will contain the age as value[0], and it will be checked that this
age satisfies certain query, for example, it is higher than 18).

10. SelectProfile receives userGenesisID and profileNonce as inputs. If profileNonce is zero, it
outputs genesis ID, otherwise, it will compute profileID and output it from the circuit.

49

credentialAtomicQuerySigOnChain

It checks that a claim issued to the prover (through Issuer’s signature, the claim is not added to Issuer’s
claims tree), satisfies a query set by the verifier, and the verification is performed in the smart contract
in this case.

Scheme visualization

Inputs

Public /
private

Input name Description

Public requestID an identifier of the request

Public issuerID issuer’s genesis ID

Public gistRoot root of the GIST, that is stored on-chain

Public challenge message that should be signed by the prover (to
prove control of an Identity)

Public isRevocation

Checked

flag that indicates whether claim revocation
should be checked or not

Public isserClaimNonRev State issuer’s Identity State that is used in the
non-revocation checks (potentially should be

equal to the on-chain one)

Public timestamp current time

Private authClaim[8] prover’s auth claim

Private authClaimIncMtp [40] MTP of the auth claim inclusion inside prover’s
claims tree

https://prnt.sc/JLEV3NGhciAY

50

Private authClaimNonRevMtp
[40]

MTP of the auth claim nonce exclusion inside
prover’s revocation tree

Private authClaimNonRevMtpNo
Aux

flag that indicates whether to check the auxiliary
node or not

Private authClaimNonRevMtpAu
xHi

auxiliary node index (key)

Private authClaimNonRevMtpAu
xHv

auxiliary node value

Private userGenesisID prover’s genesis identifier

Private challengeSignature R8x prover’s signature of the challenge (Rx point)

Private challengeSignature R8y prover’s signature of the challenge (Ry point)

Private challengeSignature S prover’s signature of the challenge (S point)

Private profileNonce random number, stored by user (0 if profile isn’t
used)

Private gistMtp[64] MTP of user’s state inclusion inside the global
state

Private gistMtpAuxHi GIST auxiliary node index (key)

Private gistMtpAuxHv GIST auxiliary node value

Private gistMtpNoAux flag that indicates whether to check the auxiliary
node in the GIST

Private claimSubject ProfileNonce nonce of the profile that claim is issued to

51

Private userState prover’s identity state

Private issuerClaim[8] claim data (4 indexes and 4 values, can be
merklized)

Private issuerAuthClaim[8] issuer’s auth claim

Private issuerAuthClaimMtp [40] MTP of the auth claim inclusion inside issuer’s
claims tree

Private issuerAuthClaims TreeRoot issuer’s claims tree root, that is used to check
auth claim inclusion

Private issuerAuthRev TreeRoot issuer’s revocation tree root, that is used to
check auth claim inclusion

Private issuerAuthRoots TreeRoot issuer’s roots tree root, that is used to check auth
claim inclusion

Private issuerAuthClaimNonRev
Mtp[40]

MTP of the auth claim nonce exclusion inside
prover’s revocation tree

Private issuerAuthClaimNonRev
MtpNoAux

flag that indicates whether to check the auxiliary
node (in the revocation exclusion check)

Private issuerAuthClaimNonRev
MtpAuxHi

auxiliary node index (key)

Private issuerAuthClaimNonRev
MtpAuxHv

auxiliary node value

Private issuerClaim SignatureR8x issuer’s signature of the issued claim (Rx point)

Private issuerClaim SignatureR8y issuer’s signature of the issued claim (Ry point)

52

Private issuerClaim SignatureS issuer’s signature of the issued claim (S point)

Private userClaimsTreeRoot prover’s claims tree root

Private userRevTreeRoot prover’s revocation tree root

Private userRootsTreeRoot prover’s roots tree root

Private issuerClaimNonRev
Mtp[40]

MTP of the claim nonce exclusion inside
prover’s revocation tree

Private issuerClaimNonRev
MtpNoAux

flag that indicates whether to check the auxiliary
node (in the revocation exclusion check)

Private issuerClaimNonRev
MtpAuxHi

auxiliary node index (key)

Private issuerClaimNonRev
MtpAuxHv

auxiliary node value

Private issuerClaimNonRev
ClaimsTreeRoot

issuer’s claims tree root (related to the
issuerClaimNonRevState)

Private issuerClaimNonRev
RevTreeRoot

issuer’s revocation tree root (related to the
issuerClaimNonRevState)

Private issuerClaimNonRev
RootsTreeRoot

issuer’s roots tree root (related to the
issuerClaimNonRevState)

Private claimSchema claim schema that was used

Private claimPathNotExists flag, that indicates whether inclusion or
exclusion should be checked in the merklized

claim

53

Private claimPathMtp[32] MTP of claimPathKey and claimPathValue pair
inclusion in the merklized claim

Private claimPathMtpNoAux flag that indicates whether auxiliary node should
be checked

Private claimPathMtpAuxHi auxiliary node index (key)

Private claimPathMtpAuxHv auxiliary node value

Private claimPathKey hash of path in merklized json-ld claim

Private claimPathValue value in merklized json-ld claim

Private slotIndex index of the slot, where value is stored, in case of
not-merklized claim

Private operator query operator (<, >, =, !=, “in”, “not in” or
“nothing”)

Private value[64] value that should be checked.

Outputs

● userID - equals user’s genesisID if profileNonce is zero otherwise, equals hash(ID, nonce).
● merklized flag - shows whether the claim is merklized or not.
● issuerAuthState - issuer state based on the provided trees (trees with “issuerAuth” prefix).
● circuitQueryHash - hash of the query (because query parameters are private, the verifier can

check that the prover has not cheated using query hash).

Let’s explore this circuit part by part:

1. AuthV2 receives a lot of parameters so they won’t be written here. This circuit checks that
the prover owns the identity and sets userID as output from the circuit. It was explained
better above, it was recommended to read it before you proceed.

54

2. VerifyCredentialSubjectProfile receives userGenesisID, claimSubjectProfileNonce, and
issuerClaim as inputs. It checks that the claim is issued to the user’s genesisID or one of its
profiles.

3. VerifyCredentialSchema receives issuerClaim and provided claimSchema as inputs and
checks that the schema inside the claim equals the provided schema.

4. VerifyExpirationTime receives issuerClaim and timestamp as inputs and checks that the
timestamp is less than the expiration time in the claim.

5. VerifyCredentialSchema receives issuerAuthClaim and “identifier” of the auth claim
schema (hardcoded) as inputs and checks that the schema inside the claim is the same as the
provided authBJJ schema.

6. GetIdenState receives the issuer’s auth tree roots (issuerAuthClaimsTreeRoot,
issuerAuthRevTreeRoot, issuerAuthRootsTreeRoot) and outputs issuerAuthState from the
circuit.

7. CheckClaimExists receives issuerAuthClaim, issuerAuthClaimMtp, and
issuerClaimsTreeRoot as inputs and checks that authClaim exists in the claims tree.

8. CheckClaimNotRevoked receives issuerAuthClaim, issuerClaimNonRevRevTreeRoot,
issuerAuthClaimNonRevMtp, and auxiliary information
(issuerAuthClaimNonRevMtpNoAux, issuerAuthClaimNonRevMtpAuxHi,
issuerAuthClaimNonRevMtpAuxHv) and it is enabled by default (i.e., enabled parameter is
hardcoded as 1). It checks that auth claim of the issuer is not revoked in his tree.

9. GetPubKeyFromClaim receives issuerAuthClaim as input and returns a public key (X and
Y coordinate of a point on the BabyJubJub curve).

10. VerifyClaimSignature receives the issuer public key (from GetPubKeyFromClaim),
issuerClaim, and issuerClaimSignature data (issuerClaimSignatureR8x,
issuerClaimSignatureR8y, issuerClaimSignatureS). It checks that the issuer's signature on the
issued claim is valid and made with his key pair.

11. CheckIdenStateMatchesRoots receives issuerClaimNonRevState and three tree roots
(issuerClaimNonRevClaimsTreeRoot, issuerClaimNonRevRevTreeRoot, and
issuerClaimNonRevRootsTreeRoot) as inputs and checks that provided state matches to the
hash of three roots.

55

12. CheckClaimNotRevoked receives issuerClaim, issuerClaimNonRevMtp and auxiliary
information (issuerClaimNonRevMtpNoAux, issuerClaimNonRevMtpAuxHi,
issuerClaimNonRevMtpAuxHv), issuerClaimNonRevRevTreeRoot and
isRevocationChecked parameter that determines whether non-revocation is checked or
skipped. It checks that the issued claim nonce is not in the revocation tree.

13. GetClaimMerklizeRoot receives issuerClaim as an input and outputs flag, which states
whether the claim is merklized or not, and the value of the root in case if merklization flag is
one.

14. SMTVerifier receives merklize.flag as enabled and merklize.output as root (from the
GetClaimMerklizeRoot circuit), ClaimPathNotExists (determines whether inclusion or
exclusion should be checked), claimPathMtp, MTP auxiliary information
(claimPathMtpNoAux, claimPathMtpAuxHi, claimPathMtpAuxHv), claimPathKey and
claimPathValue. Performs verification of merklized claim (checks that provided MTP, key,
and value match the root).

15. GetValueByIndex receives slotIndex and issuerClaim as inputs and returns chosen (by
slotIndex) value from the claim (i.e., 2 is passed, i2 is returned, 6 is passed - v2 is returned).

16. Mux1 receives merklize.flag as selector, claimValue (from getValueByIndex) as the first
possible output, and claimPathValue as the second. Based on the selector (if it is 0 or 1), it
returns the first or second possible output. In simple words, if the claim is merklized - it
returns provided value (claimPathValue); otherwise - it returns the value that was pulled out
from the claim by slotIndex.

17. SpongeHash receives a “value” array as input (query-specific array, can be age, address, group
of addresses, etc.) and hash it with the Poseidon hash function.

18. Query receives “value” array, operator, and mux1.output (a value that should be checked)
and performs operator on both value and mux1.output (i.e. if operator “=” is used, then
mux1.output should be equal to the first element in the value array). Value array will contain
more than 1 element if “in” (or “not in”) operation is performed. Otherwise, only the first
(value[0]) element will be checked (e.g., it will contain the age as value[0], and it will be
checked that this age satisfies the certain query, for example, it is higher than 18).

19. Poseidon receives claimSchema, slotIndex, operator, claimPathKey, claimPathNotExists and
output of the spongeHash circuit as inputs, hash them together and outputs the
circuitQueryHash at the end, which will be checked by the verifier.

56

credentialAtomicQuerySigOffChain

Checks that a claim issued to the prover (through Issuer’s signature, the claim is not added to Issuer
trees) satisfies a query set by the verifier, and the verification is performed in the backend service in this
case.

Scheme visualization

Inputs

Public /
private

Input name Description

Public requestID an identifier of the request

Public issuerID issuer’s genesis ID

Public claimPathKey hash of path in merklized json-ld claim

Public claimPathNotExists flag, that indicates whether inclusion or
exclusion should be checked in the merklized

claim

Public isRevocation Checked flag that indicates whether claim revocation
should be checked or not

Public issuerClaimNon RevState issuer’s Identity State that is used in the
non-revocation checks (potentially should be

equal to the on-chain one)

Public claimSchema claim schema that was used

(in the issued claim)

Public timestamp current time

https://prnt.sc/XB_xF4-_Nob-

57

Public slotIndex index of the slot, where value is stored in the
claim. This value is used when the claim is not

merklized

Public operator query operator (<, >, =, !=, “in”, “not in” or
“nothing”)

Public value[64] query specific value that should be checked.

Private issuerClaimNonRev
Mtp[40]

MTP of the claim nonce exclusion inside
prover’s revocation tree

Private issuerClaimNonRev
MtpNoAux

flag that indicates whether to check the auxiliary
node in the revocation exclusion check

Private issuerClaimNonRev
MtpAuxHi

auxiliary node index (key)

Private issuerClaimNonRev
MtpAuxHv

auxiliary node value

Private issuerClaimNonRev
ClaimsTreeRoot

issuer’s claims tree root (related to the
issuerClaimNonRevState)

Private issuerClaimNonRev
RootsTreeRoot

issuer’s roots tree root (related to the
issuerClaimNonRevState)

Private issuerClaimNonRev
RevTreeRoot

issuer’s revocation tree root (related to the
issuerClaimNonRevState)

Private claimPathMtp[32] MTP of claimPathKey and claimPathValue pair
inclusion in the merklized claim

Private claimPathMtpNoAux flag that indicates whether auxiliary node should
be checked or not

58

Private claimPathMtpAuxHi auxiliary node index (key)

Private claimPathMtpAuxHv auxiliary node value

Private claimPathValue value in merklized json-ld claim

Private claimSubject ProfileNonce nonce of the profile that claim is issued to

Private userGenesisID prover’s genesis identifier

Private profileNonce random number, stored by user (0 if profile isn’t
used)

Private issuerClaim SignatureR8x issuer’s signature of the claim (Rx point)

Private issuerClaim SignatureR8y issuer’s signature of the claim (Ry point)

Private issuerClaim SignatureS issuer’s signature of the claim (S point)

Private issuerClaim[8] claim data (4 indexes and 4 values, can be
merklized)

Private issuerAuthClaims TreeRoot issuer’s claims tree root, that is used to check
auth claim inclusion

Private issuerAuthRev TreeRoot issuer’s revocation tree root, that is used to
check auth claim inclusion

Private issuerAuth RootsTreeRoot issuer’s roots tree root, that is used to check auth
claim inclusion

Private issuerAuthClaim[8] issuer’s auth claim

59

Private issuerAuthClaimMtp[40] MTP of the auth claim inclusion inside issuer’s
claims tree

Private issuerAuthClaim
NonRevMtp[40]

MTP of the auth claim nonce exclusion inside
prover’s revocation tree

Private issuerAuthClaim
NonRevMtpNoAux

flag that indicates whether to check the auxiliary
node in the auth claim revocation exclusion

check

Private issuerAuthClaim
NonRevMtpAuxHi

auxiliary node index (key)

Private issuerAuthClaim
NonRevMtpAuxHv

auxiliary node value

Outputs

● userID - equals genesisID if profileNonce is 0 otherwise equals hash(ID,nonce).
● issuerAuthState - issuer’s state based on the provided trees (trees with “issuerAuth” prefix).
● merklized - a flag that indicates whether a claim is merklized or not.

Let’s explore this circuit part by part:

1. VerifyCredentialSubjectProfile receives userGenesisID, claimSubjectProfileNonce, and
issuerClaim as inputs. It checks that the claim is issued to the user’s genesisID or one of its
profiles.

2. VerifyCredentialSchema receives issuerClaim and provided claimSchema as inputs and
checks that the schema inside the claim equals the provided schema.

3. VerifyExpirationTime receives issuerClaim and timestamp as inputs and checks that the
timestamp is less than the expiration time in the claim.

4. VerifyCredentialSchema receives issuerAuthClaim and identifier of the auth claim schema
(hardcoded) as inputs and checks that the schema inside the auth claim equals the provided
authBJJ schema.

60

5. GetIdenState receives the issuer’s tree roots (issuerAuthClaimsTreeRoot,
issuerAuthRevTreeRoot, issuerAuthRootsTreeRoot) and outputs issuerAuthState from the
circuit.

6. CheckClaimExists receives issuerAuthClaim, issuerAuthClaimMtp, and
issuerAuthClaimsTreeRoot as inputs and checks that authClaim exists in the claims tree.

7. CheckClaimNotRevoked receives issuerAuthClaim,
issuerAuthClaimNonRevRevTreeRoot, issuerAuthClaimNonRevMtp and auxiliary
information (issuerAuthClaimNonRevMtpNoAux, issuerAuthClaimNonRevMtpAuxHi,
issuerAuthClaimNonRevMtpAuxHv) as inputs and it is enabled by default (i.e., “enabled”
parameter is hardcoded as 1). It checks that auth claim of the issuer is not revoked in his tree.

8. GetPubKeyFromClaim receives issuerAuthClaim as input and returns the public key from it
(X and Y coordinates of the point on the BabyJubJub curve).

9. VerifyClaimSignature receives the issuer’s public key (X and Y coordinates from the
GetPubKeyFromClaim), issuerClaim, and issuerClaimSignature data
(issuerClaimSignatureR8x, issuerClaimSignatureR8y, issuerClaimSignatureS). It checks that
the issuer's signature on the issued claim is valid and made with his key pair.

10. CheckIdenStateMatchesRoots receives issuerClaimNonRevState and three tree roots
(issuerClaimNonRevClaimsTreeRoot, issuerClaimNonRevRevTreeRoot, and
issuerClaimNonRevRootsTreeRoot) as inputs and checks that provided state match the hash
of three tree roots.

11. CheckClaimNotRevoked receives issuerClaim, issuerClaimNonRevMtp, auxiliary
information (issuerClaimNonRevMtpNoAux, issuerClaimNonRevMtpAuxHi,
issuerClaimNonRevMtpAuxHv), issuerClaimNonRevRevTreeRoot and
isRevocationChecked parameter that determines whether non-revocation is checked or
skipped. It checks that the claim nonce is absent in the issuer revocation tree.

12. GetClaimMerklizeRoot receives issuerClaim as input and outputs the root (as “out”), which
is stored either at index 2 or value 2 slots and the flag that states whether the claim is merklized
or not.

13. SMTVerifier receives merklize.flag as enabled and merklize.out as root (from the
GetClaimMerklizeRoot circuit), ClaimPathNotExists (determines whether inclusion or
exclusion in the tree should be checked), claimPathMtp, MTP auxiliary information

61

(claimPathMtpNoAux, claimPathMtpAuxHi, claimPathMtpAuxHv), claimPathKey and
claimPathValue. Performs verification (if the claim is merklized) of the claim (checks that
provided MTP, key, and value match the root and that provided key-value pair exists in the
tree).

14. GetValueByIndex receives issuerClaim and slotIndex as inputs and returns a specific value
from the claim (i.e., 2 is passed, i2 is returned, 6 is passed - v2 is returned).

15. Mux1 receives merklize.flag as selector, claim’s value (from getValueByIndex) as the first
possible output, and claimPathValue as the second. Based on the selector (if it is 0 or 1), it
returns the first or second possible output. If the claim is merklized - it returns provided value
(claimPathValue); otherwise - it returns the value that was pulled out from the claim by
slotIndex parameter.

16. Query receives “value” array, operator, and mux1.output (value from the claim that should be
checked) and performs the action based on the operator on both value array and mux1.output
(i.e. if operator “=” is used, then mux1.output should be equal to the first element in the value
array). Value array will contain more than 1 element if the “in” (or “not in”) operation is
performed; otherwise, only the first (value[0]) element will be checked (e.g., it will contain the
birth date as value[0]. It will be checked that the age satisfies the certain query, for example, it is
higher than 18).

17. SelectProfile receives userGenesisId and profileNonce as inputs. If profileNonce is zero, it
outputs genesisID, otherwise it will compute profileID and output it from the circuit.

