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Abstract: Taprootized Atomic Swaps is an extension for Atomic Swaps that enables the untraceability of transactions in a partic-
ular swap. Based on Schnorr signatures, Taproot technology, and zero-knowledge proofs, the taprootized atomic swaps hide swap
transactions between regular payments. We propose several implementation options: single-transaction protocol, multiple-transaction
protocol that splits the receiving amount in an untraceable way, and multichain swap protocol. Our proposed approach works with any
smart-contract-compatible chain and multiple Taproot-compatible chains. We describe the concrete implementation of the protocol
and release the source code publically.

1 Introduction

Blockchain technology has created numerous decentralized
services and networks, operating according to predefined rules
and using various cryptocurrencies. However, frequently, one
needs to conduct certain operations between two different
chains, which is usually quite problematic. In this paper, we
primarily focus on the problem of exchanging funds between
several chains via an atomic and untraceable way.

Now, imagine the setting where Alice wants to exchange
tA tokens on Chain A to Bob’s tB tokens on Chain B. The
most apparent option for Alice and Bob is to use centralized
approaches where the mediator Carol is introduced, which:
(a) takes Alice’s tA tokens and sends them to Bob, (b) takes
Bob’s tB tokens and sends them to Alice, (c) takes some
fee as a reward. However, there is an obvious reason why
this scheme is entirely unsecured: Carol can steal the tokens
within the swap process, so the approach works properly only
if Alice and Bob trust Carol completely.

For this reason, several approaches involving mediators
were developed to mitigate the issue where mediators can eas-
ily steal the tokens, such as Axelar Network [1], for example.
Despite the better security of such options, these methods
still rely on validators. The Atomic Swaps [2] were intro-
duced to address this issue, removing the need for third-party
identities.

However, one of the core disadvantages of atomic swaps
implementation in the classical form (see [2–4]) is the “dig-
ital trail”: any party can link the two transactions across
blockchains where the swap occurred and find out both the
participants of the swap and the proportion in which the
assets were exchanged.

On the other hand, atomic swaps is a technology that ini-
tially assumed the involvement of only two parties, hence a
“mathematical contract” between them directly. That is, an
ideal exchange presupposes two conditions: (a) only counter-
parties participate in the exchange (must-have) and (b) only
counterparties can trace the exchange (nice-to-have).

This paper describes the design of the concept of Tap-
rootized Atomic Swaps, with the help of which it is now
possible to conceal the very fact of the swap. To an exter-
nal investigator/auditor, transactions that initiate and exe-
cute atomic swaps will appear indistinguishable from regu-
lar Bitcoin payments. In the other accounting system (i.e.,

blockchain) involved in the transfer, more information is dis-
closed (the fact of the swap can be traced). However, it is
impossible to link this to the corresponding Bitcoin transac-
tions unless, obviously, the investigator has quite a specific
insight from the involved parties (additional context can be
provided by the time of the swap and approximate amount).

This paper focuses on implementing the protocol between
EVM-compatible blockchains [5] and Bitcoin [6] or other
taproot-compatible systems. Atomic swaps offer a means to
bridge the gap between these networks, enabling users to
exchange Ethereum-based tokens (ERC-20 tokens [7]) with
Bitcoin and vice versa.

However, note that this approach might be implemented
for any two blockchains with the following condition: “initia-
tor” chain must be taproot-compatible, while another chain
should be smart-contract-compatible.

Our paper is structured as follows: first, in Section 2, we
will discuss currently existing approaches and how they differ
from what we offer. In Section 3 we introduce basic crypto-
graphic primitives, which our protocol proposals are based
on. In Section 4, Section 5, and Section 6, we describe three
versions of the Taprootized Atomic Swap protocol, all offer-
ing different possibilities and corresponding limitations. In
Section 7, we outline the concrete implementation of the
protocol. Finally, in Section 8, we conclude, summarizing
everything described in the paper.

2 Previous Studies

2.1 Hashed Timelock Contract (HTLC)

The Hashed Timelock Contract (HTLC), introduced in [8],
implements a time-bound conditional payment. The idea is
simple: the recipient must provide the secret to get designated
coins in the specified timeframe; otherwise, coins can be spent
by their sender.

Again, suppose Alice knows a secret value s and wants to
create HTLC in Bitcoin, sending t BTC to Bob. To do so,
Alice provides two spending paths for the transaction:

• Bob shows such x which satisfies H(x) = h where h = H(s)
together with his signature (to prevent anyone except for Bob

IET Research Journals, pp. 1–9
© The Institution of Engineering and Technology 2015 1

ar
X

iv
:s

ub
m

it/
54

27
99

4 
 [

cs
.C

R
] 

 2
6 

Fe
b 

20
24

https://orcid.org/0000-0002-8237-4377
https://orcid.org/0000-0001-9519-2444
https://orcid.org/0009-0003-1815-7217
https://orcid.org/0009-0003-4118-8492
https://orcid.org/0009-0003-9961-5258


from spending the output). Here, H(·) is a cryptographic hash
function.
• After specified locktime ℓt, Alice can provide a signature.

Since it is computationally infeasible to get s from h := H(s),
there is no way Bob can spend the output if Alice has not
revealed s. This way, if ℓt time has passed, Alice can claim
her tokens back. At the same time, if Bob gets s, he uses the
first spending path and gets t tokens.

Formally, we denote such transactions by:

T←
(

versig(skB) ∧ vereq(H(x), h)
or versig(skA) ∧ locktime(ℓt)

)
, (1)

where versig(·) verifies the signature, vereq verifies that
provided x satisfies H(x) == h, and lokctime(·) is the locktime.

Several papers have proposed an enhanced version of
HTLC. For instance, [9] introduces the Mutual-Assured-
Destruction-HTLC (MAD-HTLC), which enhances the secu-
rity by accounting for the possibility of bribery attacks,
where Alice bribes miners to delay the transaction until the
timeout elapses. Additionally, [10] proposes He-HTLC that
further enhances the security by accounting for active strate-
gies and providing the Bitcoin implementation with average
transaction fees.

In this paper, we focus on the basic version described
in [8] since bribery attacks require significant capital and
risk-tolerance, and thus are highly impractical (see [11] for
details). However, our protocol can be easily extended to
include features described in MAD/He-HTLCs.

2.2 Atomic Swaps

Using HTLC as the building block, atomic swaps provide a
way to swap tokens between two parties without any medi-
ator involved. Suppose that Alice, with tA tokens on chain
A, wants to exchange her tokens with Bob, having tB tokens
on chain B. Currently, most of the existing approaches rely
on the following base algorithm, described and analyzed in
detail in paper [2] (and extended to multiple parties):

1. Alice randomly chooses a secret s and calculates h← H(s),
where H(·) is a cryptographic hash function.
2. Alice initializes two conditions in the contract on spending
tA tokens on Chain A: (a) pre-image of h is provided, (b)
locktime of ℓtA has passed.
3. Bob catches the transaction and retrieves h. Then, sim-
ilarly to Alice, Bob on Chain B defines two conditions of
spending tB tokens: (a) pre-image of h is given, (b) locktime
of ℓtB < ℓtA has passed.
4. Alice activates the transaction on Chain B and claims tB
tokens. By doing so, she reveals s – the pre-image of h.
5. Bob catches h and claims tA tokens on chain A.

As can be seen, in essence, both Alice and Bob initial-
ize HTLC with the same hashing value h, but only Alice
knows the pre-image of it. Finally, when Alice unlocks Bob’s
HTLC, she automatically enables Bob to claim tokens from
her HTLC. This process is illustrated in Figure 1.

3 Cryptography Prerequisites

This section will provide the basic cryptographic construc-
tions overview needed for Taprootized Atomic Swap protocol.

3.1 Elliptic Curve

Since Bitcoin natively works with secp256k1 [12], our proto-
col is also based on this curve. Introduce the cyclic group G

Chain A

Chain B

Block A1 Block A2 Block A3 Block A4

Block B1 Block B2 Block B3 Block B4

Commit h = H(s) Repeat s

Repeat h Reveal s

Fig. 1: Illustration of the classical atomic swap: (1) commit-
ting hash on chain A, (2) repeating the same hash on chain
B, (3) revealing the value on chain B, (4) repeating the value
on chain A.

of prime order q defined over the following elliptic curve:

E(Fp) ≜ {(x, y) ∈ F2
p : y2 = x3 + 7} ∪ {O}, (2)

where p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1 is a large
prime and O is a point on infinity, being the identity element
in a group (G,⊞), where ⊞ is the operation of adding two
points on E(Fp). Further assume that the group’s generator
is G, that is qG ≜ G ⊞ G ⊞ · · ·⊞ G︸ ︷︷ ︸

q times

= O.

The security of using the group G on an elliptic curve is jus-
tified by the complexity of discrete log algorithm: finding the
α ∈ Zq such that αG = A where A ∈ G is a given point on a
curve. The best-known algorithm requires O(√q) group oper-
ations so that the probability attacker can find α given A can
be considered negligible (at least using classical computing).

3.2 Schnorr Signature

Define the hashing function H :M×G→ Zq, whereM is the
message space. The Schnorr signature scheme Ssch is defined
over functions (G, S, V ), where:

• Key Generation G(1λ) runs by finding sk R←− Zq, pk←
sk ·G and outputting tuple (pk, sk) – public and private keys,
respectively.
• Signing Function S(sk, m) which, based on message m ∈
M and a secret key sk = x, conducts the following steps:
1. r

R←− Zq, then Xσ ← rG;
2. c← H(m, Xσ);
3. xσ ← r + xc;
4. Output signature σ := (Xσ, xσ).
• Verification Function V (pk, m, σ): to verify that a sig-
nature σ := (Xσ, xσ), applied on message m ∈M, belongs to
the public key pk = X, the verification checks whether

xσG
?== Xσ + H(m, Xσ)X, (3)

and if true, outputs accept, and reject, otherwise.

Note that sometimes, instead of using the hash function
over message space and elliptic curve, one also includes the
public key as the third parameter (so-called “key-prefixed”
variant).

3.3 zk-SNARK

Again, fixate the finite field Fp of prime order p > 2. The
core considered object is a so-called circuit – the prover
needs to show the verifier that he knows a specific secret
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value (called witness), which satisfies the rule specified in
this circuit. Formally, the arithmetic circuit is a function
C : FN

p → FK
p , being a directed acyclic graph, defining an N -

dimensional vector of K-variate polynomials [13]. |C| is the
number of gates – the number of bilinear operations to cal-
culate output in FK

p . However, usually one explicitly specify
two input parameters: public statement x ∈ Fn

p and witness
w ∈ Fm

p and the prover wants to show verifier that he knows
parameters (x, w) such that C(x, w) = 0.

A circuit example is depicted in Figure 2. Here, the circuit
contains |C| = 2 gates.

To give an example of a circuit we are going to use, suppose
the prover wants to show the verifier that he knows the pre-
image m of a hash h where the hash function H is used. In this
case, the circuit is informally can be defined as CH(h, m) :=
h− H(m), where all the heavy computation is encapsulated
in H(m).

Depending on which H is used, the different number of
gates |C| is used – the smaller this number is, the better for
us. For this reason, to optimize all the processes, we want to
use the zk-friendly functions, which require a smaller number
of gates. As of now, the great choice is the Poseidon hash-
ing function [14], which natively supports messages in Fp and
uses roughly 8× fewer constraints per message bit than Ped-
ersen Hash [15]. To further clearly distinguish different hash
functions, we denote the SHA256 hash function as H, and the
Poseidon zk-friendly hash as Hzk.

The NARK (non-interactive argument of knowledge) is the
following triple over (S, P, V ):

1. Setup function S(1λ): outputs public parameters
(pp, vp) for prover and verifier.
2. Proof generation P (pp, x, w): outputs proof π based on
public parameter pp, public statement x, and witness w.
3. Verifying function V (vp, x, π): outputs accept if proof
π shows that the prover knows witness w satisfying C(x, w) =
0, and reject otherwise.

Also, the triplet (S, P, V ) should satisfy the following two
properties explained informally:

1. Completeness: for all x ∈ Fn
p , w ∈ Fm

p such that
C(x, w) = 0:

P [V (vp, x, P (pp, x, w)) = accept] = 1. (4)

2. Soundness: for any adversary prover A, producing the
proof πA without knowing the witness w,

P [V (vp, x, πA) = accept] = negl(λ) (5)

The succinct NARK (or SNARK for short) is the one in
which the proof |π| has the size Oλ(log |C|) and the verifying
time of Oλ(|x|, log |C|).

Finally, if we require zero-knowledge, the tuple
(C, pp, vp, x, π) reveals nothing about the witness w.

4 Single-transaction Protocol

4.1 Protocol flow description

We are ready to define the concrete protocol flow. It consists
of five steps, which we enumerate in the subsequent sections:

1. Depositing BTC to escrow public key.
2. Off-chain zero-knowledge proof.
3. Depositing ETH to HTLC.
4. Withdrawing ETH from HTLC.
5. Spending BTC from escrow public key.

These steps are illustrated in Figure 3.

×

x1 x2

−

x3
x4

x5

Fig. 2: Example of an arithmetic circuit for C(x1, x2, x3) =
x1x2 − x3. Both verifier and prover know the circuit, and the
prover wants to show that he knows (x1, . . . , x5) such that
x1 × x2 = x4 and x4 − x3 = x5

4.1.1 Depositing BTC to escrow PK:

1. Alice randomly picks x
R←− Z∗q and calculates public value

X ← x ·G ∈ G.
2. Alice forms the alternative spending path in the form of
Bitcoin script s:

s← versig(skA) ∧ locktime(ℓtA), (6)

3. Alice calculates an escrow public key through Taproot
technology:

pkesc ← X + pkB + H(X + pkB , s) ·G (7)

4. Alice calculates h← Hzk(x) using Poseidon hashing func-
tion.
5. Alice forms the funding transactions and specifies the
spending conditions:
(a) versig(skesc): Bob can spend the output only if he knows
x, skB and script s.
(b) versig(skA) ∧ locktime(ℓtA): Alice can spend the output,
but only after a certain point in time ℓtA (this condition is
the script s itself).
6. Alice sends the transaction to the Bitcoin network.

4.1.2 Off-chain zero-knowledge proof:

1. Alice generates the zero-knowledge proof (see Section 3.3):

π ← P (x ·G == X ∧ Hzk(x) == h) (8)

2. Alice sends to Bob the following data:
(a) h – the hash value of x.
(b) X – public parameter.
(c) s – alternative spending path.
(d) Generated proof π.

4.1.3 Depositing ETH to HTLC:

1. Bob calculates pkesc as:

pkesc,B ← X + pkB + H(X + pkB , s) ·G (9)

and verifies the transaction that locked BTC exists (Alice
might provide the transaction ID). Then Bob performs the
following verifications:
(a) Verifies that V (π) == accept, meaning Bob can access the
output pkesc if he receives x.
(b) Verifies that script s is correct and includes only the
required alternative path.
2. If all the verification checks are passed, Bob forms the
transaction that locks his funds on the following conditions:
(a) Publishing of x and the signature of skA: only Alice can
spend it if she reveals x (the hash pre-image).
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(b) versig(skB) ∧ locktime(ℓtB): Bob, if he knows skB , can
spend the output, but only after a certain point in time ℓtB <
ℓtA
∗.

3. Bob sends the transaction to the Ethereum network (or
any other that supports Hzk).

4.1.4 Withdrawing ETH from HTLC: Alice sees the locking
conditions defined by Bob and publishes the x together with
the signature generated by her skA. As a result, Alice spends
funds locked by Bob. Note that if Alice does not publish the
relevant x, Bob can return funds after ℓtB is reached.

4.1.5 Spending BTC from escrow public key:

1. If Alice publishes a transaction with x, Bob can recognize
it and extract the x value.
2. Bob calculates the needed skesc as

skesc,B ← x + skB + H(X + pkB , s) (10)

3. Bob sends the transaction with the signature generated by
the skesc and spends funds locked by Alice.

4.2 Limitations

Despite untraceability improvement compared to the classical
Atomic Swap protocol, there are still certain drawbacks, some
of which we address in the following sections:

• Matching amounts in blockchains within some time
range: the external auditor can see how many coins/tokens
were withdrawn from the appropriate contract and try to
find the transaction in the Bitcoin networks that pay BTC (or
assets issued in the Bitcoin system) in the corresponding ratio
(based on market prices). If the payment was not instant –
the auditor can assume the time range in which the swap was
performed (the lock-time in the contract can provide more
info about it) and select all suitable transactions. Potentially,
this number can be large, but it still simplifies building the
graph of transactions for auditors with specialized equipment.
• zk-friendly hashing function support: as we have seen,
the “Bob”s chain should support the zk-friendly hashing
function Hzk. This is not always possible, and although non-
zk-friendly functions can still be used (like SHA1 or SHA256),
the corresponding circuits are much less efficient.
• Secret proper management: the secret x should be
managed appropriately and caught on time by Bob to avoid
losing money.

5 Multiple-transaction Protocol

5.1 Motivation

This section will provide a concept of breaking the amount
of BTC that must be transferred into several transactions
that will be processed via atomic way (not simultaneously,
but within the timelock interval). It increases the difficulty of
matching swap transactions because, in this case, the external
auditor needs to solve a sudoku puzzle with a much larger
number of combinations than direct swap transactions.

This solution can be applied to the swap between a smart
contract platform and several chains that support Taproot
technology. This way, the untraceability of swaps will be sig-
nificantly increased, but the user experience will be more
complicated.

∗Note that if ℓtB > ℓtA, Alice can firstly spend her transaction
since ℓtA has passed and reveal x to claim Bob’s tokens. In fact,
if Bob can catch the transaction in time ∆, then ℓtB + ∆ ≤ ℓtA.

5.2 Protocol Flow

The flow is illustrated in Figure 4. The extension is the follow-
ing — instead of forming a single pkB by Bob, he can generate
the array {pk⟨i⟩B }

n
i=1 according to the number n of transac-

tions Alice wants to spend. Also, further we use notation [n]
to denote the set {1, . . . , n}.

The updated protocol works the following way:

1. Alice has t BTC on separate outputs {ti}ni=1 (that is,∑n
i=1 ti = t).

2. Alice picks x
R←− Z∗q and calculates X ← xG. She also

forms the alternative spending paths Ls := {si}ni=1.
3. Alice calculates the array of escrow public keys Lesc :=
{pk⟨i⟩esc}ni=1 as follows:

pk⟨i⟩esc ← X + pk⟨i⟩B + H(X + pk⟨i⟩B , si) ·G, i ∈ [n] (11)

and the hash value h← Hzk(x).
4. Alice sends the list of transactions {Ti}ni=1 with the
spending conditions:

Ti ←
(

versig(skA) ∧ locktime(ℓtA)
or versig(sk⟨i⟩esc)

)
, i ∈ [n] (12)

5. Alice generates the proof:

π ← P (Hzk(x) == h ∧ xG == X) , (13)

and sends values X, Lesc, Ls, h, π to Bob (recall that Lesc
is a list of formed escrow public keys while Ls is a list of
alternative spending paths).
6. Bob verifies that (a) each script s ∈ Ls is correct and
includes only the required corresponding alternative path,
and (b) V (π) == accept. Then, he locks his tokens to the smart
contract with the following conditions:
(a) Publishing of x and checking vereq(h, Hzk(x)).
(b) versig(pkB) ∧ locktime(ℓtB).
7. Alice withdraws ETH by providing x.
8. Bob takes x and generates secret escrow keys as follows:

sk⟨i⟩esc ← x + sk⟨i⟩B + H(X + pk⟨i⟩B , si) ·G, i ∈ [n], (14)

which he uses to claim amounts {ti}ni=1.

6 Multichain TAS protocol

6.1 Motivation

Besides the better anonymity proposed in Section 5, we can
do much more. We can easily extend the protocol to multiple
networks supporting Taproot technology! Imagine that Alice
and Bob agreed to change 20 ETH to 0.8 BTC and 3 LTC.
With Taptootized Atomic Swaps, they can do that via atomic
way.

6.2 Protocol Flow

The flow is illustrated in Figure 5. We conduct the following
steps:

1. Alice with BTC keypair (pk⟨btc⟩
A , sk⟨btc⟩

A ) and LTC keypair
(pk⟨ltc⟩

A , sk⟨ltc⟩
A ) has tbtc BTC and tltc LTC. Bob needs to gen-

erate two keypairs (n = 2), the first one for the payment on
Bitcoin network (pk⟨btc⟩

B , sk⟨btc⟩
B ) and the second one for the
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Alice Bob Bitcoin Ethereum

Preparation:
x

R←− Z∗q
X ← xG

s← versig(skA) ∧ locktime(ℓtA)
pkesc ← X + pkB + H(X + pkB , s)G

h← Hzk(x)

Form Transaction:



versig(skesc)
or

versig(skA) ∧ locktime(ℓtA)




Publish tx

Proof generation:

π ← P




xG == X
and

Hzk(x) == h)




Send (h, X, s, π)

Verify V (π) == accept
and s is correct

Form Transaction:



versig(skA) ∧ vereq(Hzk(x), h)
or

versig(skB) ∧ locktime(ℓtB)




Publish tx

Sign with skA, send x

Catch x

Getting escrow secret:
skesc ← x + skB + H(X + pkB , s)

Sign with skesc

Fig. 3: Single-transaction Taprootized Atomic Swap protocol
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Alice Bob Bitcoin Ethereum

Preparation:
x

R←− Z∗q
X ← xG

Form spending paths Ls := {si}n
i=1

Form list of escrow PKs Lesc := {pk⟨i⟩esc}n
i=1:

pk⟨i⟩esc ← X + pk⟨i⟩B + H(X + pk⟨i⟩B , si)G
h← Hzk(x)

Form n transactions:



versig(sk⟨i⟩esc)
or

versig(skA) ∧ locktime(ℓtA)




Publish n txs

Proof generation:

π ← P




xG == X
and

Hzk(x) == h)




Send (h, X, s, Lesc, Ls, π)

Verify V (π) == accept
and each s ∈ Ls is correct

Form Transaction:



versig(skA) ∧ vereq(Hzk(x), h)
or

versig(skB) ∧ locktime(ℓtB)




Publish tx

Sign with skA, send x

Catch x

Getting escrow secrets:
sk⟨i⟩esc ← x + sk⟨i⟩B + H(X + pk⟨i⟩B , si)

Sign with {sk⟨i⟩esc}n
i=1

Fig. 4: Multiple-transaction Taprootized Atomic Swap protocol

IET Research Journals, pp. 1–9
6 © The Institution of Engineering and Technology 2015



Table 1 Mainnet deployment parameters
Parameter Value

Alice locks BTC tx 850e9258bf8b3bb280d32a647198d8024aece543dc283f7bfa526f4c0ceb1ab8
Bob locks ETH tx 723919c0e8ec57d38792ec29b2cb82ee885b9fbbc886b34ff40fb5d3f7cc9b43

Alice withdraws ETH tx 47546191a7c99ec4a7ddc243d6ea75d345ab3aff0762e09dd2f537731bd484f3
Bob spends BTC tx 859dbfaa901d7106aecc8cb29966ede0c9d7a17c2cae31f4d420c1d770e9706d

ETH mainnet contract address 0x936f971455bc674F77312f451963681fe964E838

payment on Litecoin (pk⟨ltc⟩
B , sk⟨ltc⟩

B ). He wants to exchange
Alice’s funds for teth ETH tokens.
2. Alice picks x

R←− Z∗q and calculates X ← xG. She also
forms the alternative spending paths sbtc and sltc for Bitcoin
and Litecoin transactions, respectively.
3. Alice calculates two values:

pk⟨btc⟩
esc ← X + pk⟨btc⟩

B + H(X + pk⟨btc⟩
B , sbtc) ·G,

pk⟨ltc⟩
esc ← X + pk⟨ltc⟩

B + H(X + pk⟨ltc⟩
B , sltc) ·G. (15)

4. Alice broadcasts transactions to Bitcoin and Litecoin
networks (locktimes might be different):

(a) Tbtc ←
(

versig(sk⟨btc⟩
A ) ∧ locktime(ℓt

⟨btc⟩
A )

or versig(sk⟨btc⟩
esc )

)

(b) Tltc ←
(

versig(sk⟨ltc⟩
A ) ∧ locktime(ℓt

⟨ltc⟩
A )

or versig(sk⟨ltc⟩
esc )

)

5. Alice generates the proof:

π ← P (Hzk(x) = h ∧ xG = X). (16)

6. Alice sends (X, pk⟨btc⟩
esc , pk⟨ltc⟩

esc , sbtc, sltc, h, π).
7. Bob asserts V (π) == accept, verifies that scripts sbtc and
sltc are correct, and then locks his teth with the spending
conditions:
(a) publishing of x and checking vereq(h, Hzk(x));
(b) versig(pkB) ∧ locktime(ℓteth) (note that ℓteth must be
smaller than both ℓtbtc and ℓtltc).
8. Alice reveals x and claims her teth tokens.
9. Bob catches x and calculates:

sk⟨btc⟩
esc ← x + sk⟨btc⟩

B + H(X + pk⟨btc⟩
B , sbtc),

sk⟨ltc⟩
esc ← x + sk⟨ltc⟩

B + H(X + pk⟨ltc⟩
B , sltc) (17)

to claim his tbtc and tltc tokens.

7 Implementation

The code∗ is mainly written in Rust, because of its efficiency
and easy-to-use suite of libraries, such as BDK, that pro-
vides everything to build a Bitcoin wallet and create/spend
UTXOs with custom spending conditions, e.g., Taproot. For
the witness generation, there are two options (code of both
can be easily obtained by Iden3 SnarkJS command line util-
ity): either use WASM code and execute it in its runtime or
use C++ bindings. The first, and chosen, option is a way of
easy implementation and flexibility because there is no need
to recompile the entire application to change the witness gen-
erator code. Still, it is significantly slower than its competitor
(11 times in this case). To generate the zero-knowledge proof,
the bindings to the Iden3 Rapidsnark C++ library† have been
used by the reason of its proven reliability and efficiency. The
Arkworks Groth16, a Rust-based native implementation of the

∗https://github.com/distributed-lab/taprootized-atomic-swaps
†(https://github.com/iden3/rapidsnark

Table 2 Zero-knowledge proof setup parameters
Parameter Value

Witness generation time, WASM ≈ 11s
Witness generation time, C++ ≈ 1s

Proof generation time 1.51s
Proof verification time ≪ 1s

Proving key size 107MB
Non-linear constraints # ≈ 95.7k

Public outputs # 9
Private inputs # 4

Groth16 zk-SNARK, is utilized for verifying zero-knowledge
proofs.

The zk-SNARK circuits are developed using Circom [16],
and 0xPARC’s circom-ecdsa‡ implementations, while the
EVM-compatible contracts are crafted in Solidity.

We also decided to test the performance of the zero-
knowledge proof: generation time, verification time, and size
of a proving key. After trying on M1 Pro Macbook, we got
parameters specified in Table 2.

We also tested the Single-transaction protocol on Bitcoin
and Ethereum mainnets! The transactions are specified in
Table 1.

8 Conclusions

In this paper, we presented the novel multichain anonymous
atomic swap protocol, which conceals the very fact of an
exchange while preserving properties of the classical Atomic
Swap [2]. We proposed three different versions of the protocol:
the basic standard version with two spending transactions
involved, the multiple-transaction version where we addi-
tionally conceal the ratio of swapped funds, and finally, the
multichain taprootized atomic swap with an ultimate goal
of developing technology for multi-chain swaps (i.e., smart
contracts that operate on multiple chains).

In summary, we get the following advantages of the
proposed multichain Taprootized Atomic Swap protocol:

1. Auditors cannot match swap transactions based on com-
mitted hash values and appropriate secrets like in classic
atomic swaps.
2. Auditors cannot assume if the particular Bitcoin transac-
tion participates in the swap — it is masked as a regular
payment transaction. The locktime condition is hidden in
the Taproot and revealed only if the swap was not performed.
3. Auditors cannot match amounts in chains directly if
the split mechanism is used. However, sudoku analysis can
be applied to make some assumptions.
4. The protocol is trustless. The protocol guarantees that
only the publishing of secret k can unlock money from the
contract. At the same time, publishing x leads to the ability
to form the correct key and produce the signature for BTC
unlock.
5. No mediator is required. Users can exchange the needed
information for the swap directly, using existing protocols for
secure message transfer.

‡https://github.com/0xPARC/circom-ecdsa
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Alice Bob Bitcoin Litecoin Ethereum

Preparation:
x

R←− Z∗q
X ← xG

Form spending paths sbtc, sltc
pk⟨btc⟩

esc ← X + pk⟨btc⟩
B

+ H(X + pk⟨btc⟩
B

, sbtc)G

pk⟨ltc⟩
esc ← X + pk⟨ltc⟩

B
+ H(X + pk⟨ltc⟩

B
, sltc)G

h← Hzk(x)

Form BTC Transaction:



versig(sk⟨btc⟩
esc )

or
versig(sk⟨btc⟩

A ) ∧ locktime(ℓt⟨btc⟩
A )




Publish tx

Form LTC Transaction:



versig(sk⟨ltc⟩
esc )

or
versig(sk⟨ltc⟩

A ) ∧ locktime(ℓt⟨ltc⟩
A )




Publish tx

Proof generation:

π ← P




xG == X
and

Hzk(x) == h)




Send (h, X, sbtc, sltc, pk⟨btc⟩
esc , pk⟨ltc⟩

esc , π)

Verify V (π) == accept
and both sbtc and sltc are correct

Form Transaction:



versig(skA) ∧ vereq(Hzk(x), h)
or

versig(skB) ∧ locktime(ℓtB)




Publish tx

Sign with skA, send x

Catch x

Getting escrow secrets:
sk⟨btc⟩

esc ← x + sk⟨btc⟩
B

+ H(X + pk⟨btc⟩
B

, sbtc)
sk⟨ltc⟩

esc ← x + sk⟨ltc⟩
B

+ H(X + pk⟨ltc⟩
B

, sltc)

Sign with sk⟨btc⟩
esc

Sign with sk⟨ltc⟩
esc

Fig. 5: Multichain Taprootized Atomic Swap protocol
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6. The protocol works not only for the native currencies
but also supports tokenized assets, non-fungible tokens, etc. It
can be a basic protocol for bridges, stablecoins, marketplaces,
etc.

Finally, we provided the practical implementation with a
detailed rationale behind the chosen technology stack and
conducted the first Taprootized Atomic Swap on Bitcoin and
Ethereum mainnets. Despite some remaining challenges, like
better secrets management, a user-friendly frontend, and the
cost of multiple transactions, our protocol is ready for real-
world use in services and applications.
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