
Taprootized Atomic Swaps
Cross-chain, Untraceable, Trustless

Distributed Lab, Jan 2024
Version 1.2

Abstract. Taprootized Atomic Swaps (TAS) is an extension for Atomic Swaps that enables the untraceability of
transactions in a particular swap. Based on Schnorr signatures, Taproot technology, and zero-knowledge proofs,
the taprootized atomic swaps hide swap transactions between regular payments.

Intro
Atomic swap is an incredible approach to cross-chain exchanges without mediators. However, one of the
disadvantages of its implementation in the classical form is the “digital trail”: any party can link the two
transactions across blockchains where the swap occurred and find out both the participants of the swap and the
proportion in which the assets were exchanged.

On the other hand, atomic swaps is a technology that initially assumed the involvement of only two parties,
hence a “mathematical contract” between them directly. That is, an ideal exchange presupposes two conditions:

1) Only counterparties participate in the exchange (must-have)
2) Only counterparties can trace the exchange (nice-to-have)

This paper describes the design of the concept of taprootized atomic swaps, with the help of which it is now
possible to conceal the very fact of the swap. To an external investigator/auditor, transactions that initiate and
execute atomic swaps will appear indistinguishable from regular Bitcoin payments. In the other accounting
system (i.e., blockchain) involved in the transfer, more information is disclosed (the fact of the swap can, in fact,
be traced). However, it is impossible to link this to the corresponding Bitcoin transactions unless, obviously, the
investigator has quite a specific insight from the involved parties (additional context can be provided by the time
of the swap and approximate amount).

Protocol

The protocol includes the following steps:
1. Alice (skA, PKA) and Bob (skB, PKB) have their keypairs and know each other's public keys.
2. Alice generates a random k and calculates the public valueK = k * G
3. Alice forms the alternative spending path Script = sig(skA) + Locktime in the form of Bitcoin Script
4. Alice calculates an escrow public key as PKEsc = K + PKB + hash((K + PKB) || Script) * G (here,

escrow is just a public key, formed using Taproot technology)
a. The signature sig(skEsc), verified by the PKEsc, can only be generated if Bob knows k, skB, and

Script
5. Alice calculates h as a hash value of k (zk-friendly hash function is recommended for use)
6. Alice forms the funding transactions and specifies the spending conditions:

a. Signature of skEsc: Bob can spend the output only if he knows k, skB and Script
b. Signature of skA + Locktime: Alice can spend the output only if she knows skA and only after

a certain point in time t1 (this condition is the Script itself)
7. Alice sends the transaction to the Bitcoin network
8. Alice generates the zero-knowledge proof that includes (for the same k):

a. The proof of knowledge of k that satisfies k*G == K
b. The proof of knowledge of k that satisfies zkHash(k) == h

9. Alice provides the set of data to Bob:
a. h
b. K
c. Script
d. proof

10. Bob calculates PKEsc as K + PKB + hash((K + PKB) || Script) * G and finds the transaction that
locked BTC (to be precise, verifies it exists). Then Bob performs the following verifications:

a. Verifies that Alice knows k that satisfies k*G == K and zkHash(k) == h, meaning Bob can
access the output PKEsc if he receives k

b. Verifies that the Script is correct and includes only the required alternative path.
11. If verifications are passed, Bob forms the transaction that locks his funds on the following conditions:

a. Publishing of k and the signature of skA: only Alice can spend it if she reveals k (hash
preimage)

b. Signature of skB + Locktime: Bob, if he knows skB, can spend the output, but only after a
certain point in time t2

12. Bob sends the transaction to the Ethereum network (or any other that supports zkHash())
13. Alice sees the locking conditions defined by Bob and publishes the k together with the signature

generated by her skA. As a result, Alice spends funds locked by Bob.
a. If Alice doesn’t publish the relevant k, Bob can return funds after t2 is reached

14. If Alice publishes a transaction with k, Bob can recognize it and extract the k value
15. Bob calculates the needed skEsc as skEsc = k + skB + hash((K + PKB) || Script)
16. Bob sends the transaction with the signature generated by the skEsc and spends funds locked by Alice

Implementation notes
1. As an approach for escrow public key forming, the usage of MuSig aggregation mechanism is preferable

[1].
2. All conditions described in step 5 (Protocol section) can be put into a P2TR address. The formed

address will not differ from the regular Bitcoin address (single or multisig) formed using the P2TR
method [2].

3. As a zk-friendly hash function, we can use Poseidon [3].
4. For zk operations with EC points, we can use the 0xPARC library [4].

Links
[1] https://bitcoinops.org/en/topics/musig/
[2] https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
[3] https://github.com/iden3/circomlib/blob/master/circuits/poseidon.circom
[4] https://github.com/0xPARC/circom-ecdsa/blob/master/circuits/secp256k1.circom

https://bitcoinops.org/en/topics/musig/
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://github.com/iden3/circomlib/blob/master/circuits/poseidon.circom
https://github.com/0xPARC/circom-ecdsa/blob/master/circuits/secp256k1.circom

